A Model Integrating Fire Prediction and Detection for Rural-Urban Interface

N. Alamgir, W. Boles, V. Chandran
{"title":"A Model Integrating Fire Prediction and Detection for Rural-Urban Interface","authors":"N. Alamgir, W. Boles, V. Chandran","doi":"10.1109/DICTA.2015.7371217","DOIUrl":null,"url":null,"abstract":"This paper proposes a model that integrates new smoke detection and fire prediction techniques for the rural-urban interface area. The model aims to predict fire risk from weather parameters, and to detect smoke using video monitoring systems. Further, the fire danger index (FDI) provided by the prediction algorithm would be utilized to enhance the certainty of smoke detection and reduce false alarm rates. Experimental results illustrate that our prediction algorithm successfully predicts fire risk on a five-point scale with mean accuracy of 94.92% and the detection algorithm more effectively detects smoke compared to other algorithms by achieving 97% average accuracy.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a model that integrates new smoke detection and fire prediction techniques for the rural-urban interface area. The model aims to predict fire risk from weather parameters, and to detect smoke using video monitoring systems. Further, the fire danger index (FDI) provided by the prediction algorithm would be utilized to enhance the certainty of smoke detection and reduce false alarm rates. Experimental results illustrate that our prediction algorithm successfully predicts fire risk on a five-point scale with mean accuracy of 94.92% and the detection algorithm more effectively detects smoke compared to other algorithms by achieving 97% average accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城乡结合部火灾预测与探测集成模型
本文提出了一种融合新型城乡结合部烟雾探测和火灾预测技术的模型。该模型旨在根据天气参数预测火灾风险,并利用视频监控系统探测烟雾。此外,利用预测算法提供的火灾危险指数(FDI)来提高烟雾探测的确定性,降低虚警率。实验结果表明,我们的预测算法成功地预测了五级火灾风险,平均准确率为94.92%,检测算法比其他算法更有效地检测烟雾,平均准确率达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illumination Compensated Segmentation of Microscopic Images of Activated Sludge Flocs Rotation Invariant Spatial Pyramid Matching for Image Classification Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance A New Model for the Segmentation of Multiple, Overlapping, Near-Circular Objects An Analysis of Human Engagement Behaviour Using Descriptors from Human Feedback, Eye Tracking, and Saliency Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1