E. O. Kontis, A. Chrysochos, G. Papagiannis, T. Papadopoulos
{"title":"Development of measurement-based generic load models for dynamic simulations","authors":"E. O. Kontis, A. Chrysochos, G. Papagiannis, T. Papadopoulos","doi":"10.1109/PTC.2015.7232800","DOIUrl":null,"url":null,"abstract":"In this paper the development of robust measurement-based load models for dynamic simulations is discussed. Load model parameters vary significantly, due to different loading conditions, thus, load models obtained from measurements are valid only for a specific operating condition and cannot be easily generalized. Scope of the paper is to develop a generic load model, suitable for dynamic simulations over a wide range of operating and loading conditions. In order to derive the proposed generic model, three methodologies are thoroughly investigated. Several simulation scenarios of different operational conditions are examined with NEPLAN software and are used to validate the accuracy of the proposed models.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper the development of robust measurement-based load models for dynamic simulations is discussed. Load model parameters vary significantly, due to different loading conditions, thus, load models obtained from measurements are valid only for a specific operating condition and cannot be easily generalized. Scope of the paper is to develop a generic load model, suitable for dynamic simulations over a wide range of operating and loading conditions. In order to derive the proposed generic model, three methodologies are thoroughly investigated. Several simulation scenarios of different operational conditions are examined with NEPLAN software and are used to validate the accuracy of the proposed models.