On Data Analysis and Design and Implementation of Data Preprocessing Scheme Based on Low-quality Rock Datasets

Quan Hao
{"title":"On Data Analysis and Design and Implementation of Data Preprocessing Scheme Based on Low-quality Rock Datasets","authors":"Quan Hao","doi":"10.23977/jaip.2022.050208","DOIUrl":null,"url":null,"abstract":": With fast progress of deep learning technology, breakthroughs are achieved in many industries by virtue of efficient artificial intelligence models. In addition, computer hardware is cheaper, which makes it easier to acquire an excellent deep learning model. However, output of a model with good generalization rests with not only powerful hardware computing speed, but also quality of dataset involved in the calculation. Unfortunately, high-quality dataset is probably more expensive than high-end hardware, and this forces deep learning engineers or practitioners to use lower-quality dataset. Anyway, it doesn’t mean excellent deep learning programs can’t be created by such dataset. In particular, dataset preprocessing is equally important, and even engineers need to spend most of time elaborately formulating preprocessing strategies. This study mainly analyzes data and formulates preprocessing schemes of low-quality rock datasets. It aims to make deep learning programs more efficient and general-purpose at the lowest possible cost.","PeriodicalId":293823,"journal":{"name":"Journal of Artificial Intelligence Practice","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jaip.2022.050208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: With fast progress of deep learning technology, breakthroughs are achieved in many industries by virtue of efficient artificial intelligence models. In addition, computer hardware is cheaper, which makes it easier to acquire an excellent deep learning model. However, output of a model with good generalization rests with not only powerful hardware computing speed, but also quality of dataset involved in the calculation. Unfortunately, high-quality dataset is probably more expensive than high-end hardware, and this forces deep learning engineers or practitioners to use lower-quality dataset. Anyway, it doesn’t mean excellent deep learning programs can’t be created by such dataset. In particular, dataset preprocessing is equally important, and even engineers need to spend most of time elaborately formulating preprocessing strategies. This study mainly analyzes data and formulates preprocessing schemes of low-quality rock datasets. It aims to make deep learning programs more efficient and general-purpose at the lowest possible cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低质量岩石数据集的数据分析与预处理方案的设计与实现
:随着深度学习技术的快速发展,借助高效的人工智能模型,许多行业都取得了突破。此外,计算机硬件更便宜,这使得它更容易获得一个优秀的深度学习模型。然而,一个好的泛化模型的输出不仅取决于强大的硬件计算速度,还取决于计算所涉及的数据集的质量。不幸的是,高质量的数据集可能比高端硬件更昂贵,这迫使深度学习工程师或从业者使用低质量的数据集。无论如何,这并不意味着优秀的深度学习程序不能由这样的数据集创建。特别是数据集预处理同样重要,甚至工程师也需要花费大量时间精心制定预处理策略。本研究主要对低质量岩石数据集进行数据分析,制定预处理方案。它旨在以尽可能低的成本使深度学习程序更高效、更通用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Key Technologies of Computer Artificial Intelligence Recognition Research and Application of Health Code Recognition Based on Paddle OCR under the Background of Epidemic Prevention and Control A Deep Reinforcement Learning Based Emotional State Analysis Method for Online Learning Design of an AI Health Risk Assessment System for Dietary Hygiene of Key Groups Based on IoT Wearable Devices Design and Implementation of Tour Guide Robot for Red Education Base
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1