A Symmetric Nets Emulator for Adaptive P/T Nets

L. Capra, Matteo Camilli
{"title":"A Symmetric Nets Emulator for Adaptive P/T Nets","authors":"L. Capra, Matteo Camilli","doi":"10.1109/SYNASC.2018.00038","DOIUrl":null,"url":null,"abstract":"Despite Petri Nets represent a sound and expressive formal model for distributed discrete-event systems, they cannot specify in a natural way structural changes caused by adaptation procedures that are likely to occur in distributed applications running in a dynamically changing environment. In this paper a framework based on the Symmetric Nets formalism (SN) is proposed, able to emulate the behaviour of any Place/Transition (P/T) system, and safely implement changes to system's layout during execution. The advantage of this proposal is twofold: (i) the intrinsic features of SN formalism (and its timed extension) for efficient (performance) analysis can be exploited, (ii) powerful off-the-shelf software tools, that natively support Symmetric Nets, can ease both the modelling and the analysis phases. The limited data abstraction capabilities of SN require the use of a highnumber of non observable transitions to simulate the atomic firing of Petri nets' transitions. This gives rise to complexity issues in the model analysis, that are thoroughly discussed and (partially) faced.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite Petri Nets represent a sound and expressive formal model for distributed discrete-event systems, they cannot specify in a natural way structural changes caused by adaptation procedures that are likely to occur in distributed applications running in a dynamically changing environment. In this paper a framework based on the Symmetric Nets formalism (SN) is proposed, able to emulate the behaviour of any Place/Transition (P/T) system, and safely implement changes to system's layout during execution. The advantage of this proposal is twofold: (i) the intrinsic features of SN formalism (and its timed extension) for efficient (performance) analysis can be exploited, (ii) powerful off-the-shelf software tools, that natively support Symmetric Nets, can ease both the modelling and the analysis phases. The limited data abstraction capabilities of SN require the use of a highnumber of non observable transitions to simulate the atomic firing of Petri nets' transitions. This gives rise to complexity issues in the model analysis, that are thoroughly discussed and (partially) faced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应P/T网络的对称网络仿真器
尽管Petri网代表了分布式离散事件系统的一种健全且富有表现力的形式化模型,但它们不能以自然的方式指定在动态变化的环境中运行的分布式应用程序中可能发生的由适应过程引起的结构变化。本文提出了一个基于对称网形式化(SN)的框架,能够模拟任何位置/转换(P/T)系统的行为,并在执行过程中安全地实现对系统布局的更改。这个建议的优点是双重的:(i) SN形式化的内在特征(及其时间扩展)可以用于有效的(性能)分析,(ii)强大的现成软件工具,原生支持对称网络,可以简化建模和分析阶段。SN有限的数据抽象能力要求使用大量不可观察的跃迁来模拟Petri网跃迁的原子发射。这导致了模型分析中的复杂性问题,这些问题经过了彻底的讨论和(部分地)面对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1