An efficient parameters estimation method for automatic patch-based texture synthesis

Jakrapong Narkdej, P. Kanongchaiyos
{"title":"An efficient parameters estimation method for automatic patch-based texture synthesis","authors":"Jakrapong Narkdej, P. Kanongchaiyos","doi":"10.1145/1503454.1503471","DOIUrl":null,"url":null,"abstract":"Patch-based texture synthesis is a method for synthesizing bigger texture from smaller sample patch by patch. This method requires two user defined parameters including patch size and boundary zone which cannot directly evaluated. To obtain optimal parameters, we can analyze texture using Markov Random Field, but it is too expensive to be used with large textures. This paper introduces more efficient method to find optimal parameters. Firstly, we use graph-based image segmentation to extract segments from the sample. Secondly, we choose main feature to be preserved in result. Finally, we calculate optimal parameters based on size and repetition of the segments. Our technique reduces time used to determine the parameters compared to former method and can be used with wide range of textures.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1503454.1503471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Patch-based texture synthesis is a method for synthesizing bigger texture from smaller sample patch by patch. This method requires two user defined parameters including patch size and boundary zone which cannot directly evaluated. To obtain optimal parameters, we can analyze texture using Markov Random Field, but it is too expensive to be used with large textures. This paper introduces more efficient method to find optimal parameters. Firstly, we use graph-based image segmentation to extract segments from the sample. Secondly, we choose main feature to be preserved in result. Finally, we calculate optimal parameters based on size and repetition of the segments. Our technique reduces time used to determine the parameters compared to former method and can be used with wide range of textures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的基于补丁的纹理自动合成参数估计方法
基于patch的纹理合成是一种将较小的样本逐块合成较大纹理的方法。该方法需要用户自定义两个参数,包括补丁大小和边界区域,这些参数不能直接计算。为了获得最优参数,我们可以使用马尔可夫随机场对纹理进行分析,但对于大型纹理来说,成本太高。本文介绍了一种更有效的求最优参数的方法。首先,我们使用基于图的图像分割从样本中提取片段。其次,选择结果中需要保留的主要特征。最后,我们根据片段的大小和重复次数计算出最优参数。与以前的方法相比,我们的技术减少了确定参数的时间,并且可以用于广泛的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progressive RBF interpolation Automatic addition of physics components to procedural content Out-of-core real-time visualization of massive 3D point clouds Implementation of the Lucas-Kanade image registration algorithm on a GPU for 3D computational platform stabilisation Adaptive LOD editing of quad meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1