Deployable Robotic Structures via Passive Rigidity on A Soft, Growing Robot

Francesco Fuentes, Laura H. Blumenschein
{"title":"Deployable Robotic Structures via Passive Rigidity on A Soft, Growing Robot","authors":"Francesco Fuentes, Laura H. Blumenschein","doi":"10.1109/RoboSoft55895.2023.10122104","DOIUrl":null,"url":null,"abstract":"Deployable and reconfigurable structures use shape-changing designs to transform between different forms and create usable structures, often from small initial packages. While these structures create reliable transformations, the exact shapes must be defined at design and manufacturing time. However, many applications in unstructured environments would benefit from deployable structures that can adjust to the circumstances of the application on demand. To address this need for autonomous behavior, we propose deployable robotic structures, combining soft shape-changing robots with passive and permanent stiffening. The specific implementation in this paper uses chemical curing capable of creating stiffness change at arbitrary locations along a soft growing robot without impeding the function of the robot or requiring a continuous supply of energy to maintain its rigidity. In structural testing, the application of this method is able to drastically increase load resistances axially by an average of 64 N and transversely by an average of 2.18 Nm. Finally, two demonstrations are performed, which show how this combination of soft growing robot and permanent stiffening can increase the structure's carrying capacity and expand the robot's navigational capabilities, showing the potential of deployable robotic structures.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deployable and reconfigurable structures use shape-changing designs to transform between different forms and create usable structures, often from small initial packages. While these structures create reliable transformations, the exact shapes must be defined at design and manufacturing time. However, many applications in unstructured environments would benefit from deployable structures that can adjust to the circumstances of the application on demand. To address this need for autonomous behavior, we propose deployable robotic structures, combining soft shape-changing robots with passive and permanent stiffening. The specific implementation in this paper uses chemical curing capable of creating stiffness change at arbitrary locations along a soft growing robot without impeding the function of the robot or requiring a continuous supply of energy to maintain its rigidity. In structural testing, the application of this method is able to drastically increase load resistances axially by an average of 64 N and transversely by an average of 2.18 Nm. Finally, two demonstrations are performed, which show how this combination of soft growing robot and permanent stiffening can increase the structure's carrying capacity and expand the robot's navigational capabilities, showing the potential of deployable robotic structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性生长机器人的被动刚性可展开机器人结构
可部署和可重构结构使用形状变化设计在不同的形式之间转换,并创建可用的结构,通常从小的初始包。虽然这些结构创建可靠的转换,但必须在设计和制造时定义精确的形状。然而,非结构化环境中的许多应用程序将受益于可部署的结构,这些结构可以根据需要调整应用程序的环境。为了满足这种自主行为的需求,我们提出了可展开的机器人结构,将柔性变形机器人与被动和永久硬化相结合。本文的具体实现使用化学固化,能够在软生长机器人的任意位置产生刚度变化,而不妨碍机器人的功能或需要连续的能量供应来保持其刚度。在结构测试中,应用该方法可以显著增加轴向的平均载荷阻力64 N,横向的平均载荷阻力为2.18 Nm。最后,进行了两个演示,展示了软生长机器人和永久加强的结合如何提高结构的承载能力和扩展机器人的导航能力,展示了可展开机器人结构的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modular Bio-inspired Robotic Hand with High Sensitivity Sensorizing a Compression Sleeve for Continuous Pressure Monitoring and Lymphedema Treatment Using Pneumatic or Resistive Sensors Fabrication and Characterization of a Passive Variable Stiffness Joint based on Shear Thickening Fluids A Soft Wearable Robot to Support Scapular Adduction and Abduction for Respiratory Rehabilitation Design of 3D-Printed Continuum Robots Using Topology Optimized Compliant Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1