CFAR Algorithm for Improving Detections on Radar Raw Data Matrices

J. Perdoch, S. Gazovová, M. Pacek, Z. Matousek, J. Ochodnicky
{"title":"CFAR Algorithm for Improving Detections on Radar Raw Data Matrices","authors":"J. Perdoch, S. Gazovová, M. Pacek, Z. Matousek, J. Ochodnicky","doi":"10.23919/NTSP54843.2022.9920396","DOIUrl":null,"url":null,"abstract":"This paper presents algorithms for improving Constant False Alarm Rate (CFAR) detections on raw radar data matrices. Acceleration of radar signal processing was assessed by the application of Cell-Averaging CFAR (CA-CFAR) in four specific optimization cases. Reduction of clutter impact in CA-CFAR was also implemented in order to enhance CA-CFAR operation. For the simulation setup, synthetic radar signals with different Signal-to-Noise Ratio (SNR) values were used. It is further demonstrated that radar signal processing computational complexity can be reduced by applying CA-CFAR on the vector consisting of computed statistical values.","PeriodicalId":103310,"journal":{"name":"2022 New Trends in Signal Processing (NTSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP54843.2022.9920396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents algorithms for improving Constant False Alarm Rate (CFAR) detections on raw radar data matrices. Acceleration of radar signal processing was assessed by the application of Cell-Averaging CFAR (CA-CFAR) in four specific optimization cases. Reduction of clutter impact in CA-CFAR was also implemented in order to enhance CA-CFAR operation. For the simulation setup, synthetic radar signals with different Signal-to-Noise Ratio (SNR) values were used. It is further demonstrated that radar signal processing computational complexity can be reduced by applying CA-CFAR on the vector consisting of computed statistical values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进雷达原始数据矩阵检测的CFAR算法
本文提出了在原始雷达数据矩阵上改进恒虚警率检测的算法。在4个具体优化案例中,应用Cell-Averaging CFAR (CA-CFAR)评估了雷达信号处理的加速效果。为了提高CA-CFAR的实效性,还对CA-CFAR中的杂波影响进行了降低。仿真设置采用不同信噪比(SNR)值的合成雷达信号。进一步证明,将CA-CFAR应用于由计算统计值组成的向量上,可以降低雷达信号处理的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Tool for Pronunciation Training of Specific English Terminology Simulation and Measurement of Optical Networks 10 and 100 Gb/s Investigation of the Potential Influence of Wind Farms on the VHF Tactical Links Performance Malware Signatures Detection with Neural Networks Implementation of True Current Amplifiers via Commercial Integrated Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1