Energy effciency and performance of cloud data centers: which role can modeling play?

P. Kühn
{"title":"Energy effciency and performance of cloud data centers: which role can modeling play?","authors":"P. Kühn","doi":"10.1145/2940679.2940688","DOIUrl":null,"url":null,"abstract":"Resource Virtualization and Load Balancing are main objectives to reduce the power consumption and to improve the performance of large data centers (DC). The management of Cloud Data Centers (CDC) requires an accurate planning and an efficient use of system resources in order to save energy consumption (\"greening\"), to provide Quality of Service (QoS), and to meet negotiated Service Level Agreements (SLA). This contribution addresses the question of modeling and the development of generic queuing models for energy-efficient use of resources for dynamic load balancing in virtualized CDCs. Performance models are developed for energy efficiency through automatic Server Consolidation, Dynamic Voltage and Frequency Scaling (DVFS) under Static Load Balancing; Dynamic Load Balancing can be achieved through Virtual Machine (VM) migrations. The analysis of such models provides quantitative performance figures upon which the system operation can be optimized with respect to guaranteed real-time performance and energy efficiency under prescribed SLAs.","PeriodicalId":268208,"journal":{"name":"Proceedings of the 5th International Workshop on Energy Efficient Data Centres","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Energy Efficient Data Centres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2940679.2940688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Resource Virtualization and Load Balancing are main objectives to reduce the power consumption and to improve the performance of large data centers (DC). The management of Cloud Data Centers (CDC) requires an accurate planning and an efficient use of system resources in order to save energy consumption ("greening"), to provide Quality of Service (QoS), and to meet negotiated Service Level Agreements (SLA). This contribution addresses the question of modeling and the development of generic queuing models for energy-efficient use of resources for dynamic load balancing in virtualized CDCs. Performance models are developed for energy efficiency through automatic Server Consolidation, Dynamic Voltage and Frequency Scaling (DVFS) under Static Load Balancing; Dynamic Load Balancing can be achieved through Virtual Machine (VM) migrations. The analysis of such models provides quantitative performance figures upon which the system operation can be optimized with respect to guaranteed real-time performance and energy efficiency under prescribed SLAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云数据中心的能源效率和性能:建模可以发挥什么作用?
资源虚拟化和负载均衡是大型数据中心降低功耗和提高性能的主要目标。云数据中心(CDC)的管理需要准确规划和有效利用系统资源,以节省能源消耗(“绿色化”),提供服务质量(QoS),并满足商定的服务水平协议(SLA)。该贡献解决了建模和开发通用排队模型的问题,以便在虚拟cdc中高效地使用动态负载平衡资源。通过静态负载平衡下的自动服务器整合、动态电压和频率缩放(DVFS),开发了能效性能模型;通过虚拟机迁移实现动态负载均衡。对这些模型的分析提供了定量的性能数据,根据这些数据,可以在规定的sla下优化系统运行,保证实时性能和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DC4Cities power planning: sensitivity to renewable energy forecasting errors Learning-based power prediction for data centre operations via deep neural networks Optimizing the power factor of data centers connected to the smart grid Competitive online algorithms for geographical load balancing in data centers with energy storage Energy effciency and performance of cloud data centers: which role can modeling play?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1