Sublinear-time Algorithms for Stress Minimization in Graph Drawing

A. Meidiana, James Wood, Seok-Hee Hong
{"title":"Sublinear-time Algorithms for Stress Minimization in Graph Drawing","authors":"A. Meidiana, James Wood, Seok-Hee Hong","doi":"10.1109/PacificVis52677.2021.00030","DOIUrl":null,"url":null,"abstract":"We present algorithms reducing the runtime of the stress minimization iteration of stress-based layouts to sublinear in the number of vertices and edges. Specifically, we use vertex sampling to further reduce the number of vertex pairs considered in stress minimization iterations. Moreover, we use spectral sparsification to reduce the number of edges considered in stress minimization computations to sublinear in the number of edges, esp. for dense graphs.Specifically, we present new pivot selection methods using importance-based sampling. Then, we present two variations of sublinear-time stress minimization method on two popular stress-based layouts, Stress Majorization and Stochastic Gradient Descent.Experimental results demonstrate that our sublinear-time algorithms run, on average, about 35% faster than the state-of-art linear-time algorithms, while obtaining similar quality drawings based on stress and shape-based metrics.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present algorithms reducing the runtime of the stress minimization iteration of stress-based layouts to sublinear in the number of vertices and edges. Specifically, we use vertex sampling to further reduce the number of vertex pairs considered in stress minimization iterations. Moreover, we use spectral sparsification to reduce the number of edges considered in stress minimization computations to sublinear in the number of edges, esp. for dense graphs.Specifically, we present new pivot selection methods using importance-based sampling. Then, we present two variations of sublinear-time stress minimization method on two popular stress-based layouts, Stress Majorization and Stochastic Gradient Descent.Experimental results demonstrate that our sublinear-time algorithms run, on average, about 35% faster than the state-of-art linear-time algorithms, while obtaining similar quality drawings based on stress and shape-based metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图形绘制中应力最小化的亚线性时间算法
我们提出了一种算法,将基于应力的布局的应力最小化迭代的运行时间减少到顶点和边的数量的次线性。具体来说,我们使用顶点采样来进一步减少应力最小化迭代中考虑的顶点对的数量。此外,我们使用谱稀疏化将应力最小化计算中考虑的边缘数量减少到亚线性的边缘数量,特别是对于密集图。具体来说,我们提出了新的基于重要性抽样的枢轴选择方法。在此基础上,针对两种常用的基于应力的布局,提出了亚线性时间应力最小化方法的两种变体:应力最大化法和随机梯度下降法。实验结果表明,我们的亚线性时间算法的运行速度平均比最先进的线性时间算法快35%左右,同时基于应力和形状度量获得类似质量的绘图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1