Prediction with recurrent networks

N. H. Wulff, J. Hertz
{"title":"Prediction with recurrent networks","authors":"N. H. Wulff, J. Hertz","doi":"10.1109/NNSP.1992.253666","DOIUrl":null,"url":null,"abstract":"The authors study extrapolation of time series using recurrent neural networks. They use the real-time recurrent learning algorithm introduced by R. J. Williams and D. Zipser (1989), both in the original form for first order nets and in a form for second order nets. It is shown that both the first order and the second order nets are able to learn to simulate the Mackey-Glass series. The prediction quality of the results is comparable to that from feedforward nets.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The authors study extrapolation of time series using recurrent neural networks. They use the real-time recurrent learning algorithm introduced by R. J. Williams and D. Zipser (1989), both in the original form for first order nets and in a form for second order nets. It is shown that both the first order and the second order nets are able to learn to simulate the Mackey-Glass series. The prediction quality of the results is comparable to that from feedforward nets.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
循环网络预测
作者利用递归神经网络研究了时间序列的外推。他们使用了R. J. Williams和D. Zipser(1989)引入的实时循环学习算法,既有一阶网络的原始形式,也有二阶网络的形式。结果表明,一阶和二阶网络都能够学习模拟Mackey-Glass级数。结果的预测质量与前馈网络相当
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1