{"title":"JOINT ENERGY AND SINR COVERAGE IN ENERGY HARVESTING MMWAVE CELLULAR NETWORKS WITH USER-CENTRIC BASE STATION DEPLOYMENTS","authors":"Xueyuan Wang, M. C. Gursoy","doi":"10.1109/GlobalSIP.2018.8646500","DOIUrl":null,"url":null,"abstract":"In this paper, we consider simultaneous wireless information and power transfer in millimeter wave (mmWave) cellular networks with user-centric base station deployments. The distinguishing features of mmWave communications are incorporated into the system model. Moreover, the locations of user equipments (UEs) are modeled as a Thomas cluster process. First, the association probability is investigated. Subsequently, using tools from stochastic geometry, we analyze the energy coverage and signal-to-interference-plus-noise ratio (SINR) coverage of the network and provide general expressions. Through numerical results, we draw insights on how to model the system to improve the coverage performance.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we consider simultaneous wireless information and power transfer in millimeter wave (mmWave) cellular networks with user-centric base station deployments. The distinguishing features of mmWave communications are incorporated into the system model. Moreover, the locations of user equipments (UEs) are modeled as a Thomas cluster process. First, the association probability is investigated. Subsequently, using tools from stochastic geometry, we analyze the energy coverage and signal-to-interference-plus-noise ratio (SINR) coverage of the network and provide general expressions. Through numerical results, we draw insights on how to model the system to improve the coverage performance.