DIAGNOSIS KETIDAKLURUSAN (MISALIGNMENT) POROS MENGGUNAKAN METODE MULTICLASS SUPPORT VECTOR MACHINE (SVM)

Wanto Wanto, D. Susilo
{"title":"DIAGNOSIS KETIDAKLURUSAN (MISALIGNMENT) POROS MENGGUNAKAN METODE MULTICLASS SUPPORT VECTOR MACHINE (SVM)","authors":"Wanto Wanto, D. Susilo","doi":"10.20961/mekanika.v18i2.35403","DOIUrl":null,"url":null,"abstract":"<pre><span lang=\"EN-US\">Misalignment is a condition where the centerlines of two coupled shafts do not coincide. Misalignment is the commonly fault in rotating machinery. Detection and diagnosis of shaft misalignment is crucial to achieve its optimal performance. The purpose of research is to diagnose shaft misalignment using multiclass support vector machine (SVM). </span><span lang=\"EN-US\">The time-domain vibration signals of a shaft alignment rig with normal, parallel misalignment and angular misalignment of shaft conditions were obtained from vibration measurement signals. The accelerometer was used to measure vibration with </span><span lang=\"EN-US\">a sampling frequency of 20 kHz at the constant speed operation of 1000 rpm</span><span lang=\"EN-US\">. The features of median, RMS, crest factor, variance, kurtosis, shape factor, impulse factor, skewness, range, standard deviation and maximum were extracted from the vibration signal. The </span><span lang=\"EN-US\">Principal Component Analysis (</span><span lang=\"EN-US\">PCA) was applied for reduce the number of variables for data input to principal components with lower dimension. The multiclass SVM with </span><span lang=\"EN-US\">One Against One (OAO) method</span><span lang=\"EN-US\">and linear kernel</span><span lang=\"EN-US\"> were used for classification. The results </span><span lang=\"EN-US\">show that SVM </span><span lang=\"EN-US\">for diagnosis of shaft misalignment show a good performance with an accuracy of 100%.</span></pre>","PeriodicalId":356258,"journal":{"name":"Mekanika: Majalah Ilmiah Mekanika","volume":"89 44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekanika: Majalah Ilmiah Mekanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/mekanika.v18i2.35403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Misalignment is a condition where the centerlines of two coupled shafts do not coincide. Misalignment is the commonly fault in rotating machinery. Detection and diagnosis of shaft misalignment is crucial to achieve its optimal performance. The purpose of research is to diagnose shaft misalignment using multiclass support vector machine (SVM). The time-domain vibration signals of a shaft alignment rig with normal, parallel misalignment and angular misalignment of shaft conditions were obtained from vibration measurement signals. The accelerometer was used to measure vibration with a sampling frequency of 20 kHz at the constant speed operation of 1000 rpm. The features of median, RMS, crest factor, variance, kurtosis, shape factor, impulse factor, skewness, range, standard deviation and maximum were extracted from the vibration signal. The Principal Component Analysis (PCA) was applied for reduce the number of variables for data input to principal components with lower dimension. The multiclass SVM with One Against One (OAO) methodand linear kernel were used for classification. The results show that SVM for diagnosis of shaft misalignment show a good performance with an accuracy of 100%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蒙古纳坎方法的多类支持向量机诊断
不对中是两个耦合轴的中心线不重合的情况。不对准是旋转机械中常见的故障。轴对中检测与诊断是实现轴对中最佳性能的关键。研究的目的是利用多类支持向量机(SVM)对轴向错位进行诊断。从振动测量信号中得到轴向正向、平行向和角向三种情况下的轴向校直装置的时域振动信号。加速度计测量振动,采样频率为20khz,恒速运行1000rpm。提取振动信号的中位数、均方根、波峰因子、方差、峰度、形状因子、脉冲因子、偏度、极差、标准差和最大值等特征。采用主成分分析(PCA)将数据输入的变量数量减少到低维主成分。采用多类支持向量机的一对一(OAO)方法和线性核进行分类。结果表明,支持向量机用于轴向错位诊断具有良好的性能,诊断准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Hole Geometry Shape in Vortex Generators on Fluid Output Temperature: Computational Fluids Dynamics Validation Predicting the Drag Coefficient Characteristics of Ocean Bottom Unit (OBU) Float Array Model for Early Warning Tsunami Systems Using Computational Fluid Dynamics (CFD) Method Evaluating the Influence of Environmental Factors and Parameters on Advancements in Welding and Joining Processes: A Review Adsorption Characteristics of Silica Gel-Water Pairs in Personal Protection Equipment Repair Project Acceleration Strategy of Three Ship Units using Fuzzy Logic Analysis and Critical Path Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1