Vamsi Krishna Dhulipalla, Md Abdullah Al Hafiz Khan
{"title":"Mental workload classification from non-invasive fNIRs signals through deep convolutional neural network","authors":"Vamsi Krishna Dhulipalla, Md Abdullah Al Hafiz Khan","doi":"10.1109/COMPSAC54236.2022.00230","DOIUrl":null,"url":null,"abstract":"Classification of mental workload has always been considered a crucial task in the literature related to brain mem-ory. People perform various tasks and have multiple cognitive workloads. This mental workload can be sensed in a non-intrusive way using Functional near-infrared spectroscopy (fNIRS) sig-nals. fNIRS is a photosensitive brain examining method which uses near-infrared spectroscopy to measure aspects of brain functions and activities. In this work, we focus on classifying segmented mental workload from fNIRS signals. We propose a deep convolutional neural (DCNN) network to classify mental workload. We evaluate our model performance using the publicly available large-scale open-access dataset, “Tufts fNIRS to Mental Workload (fNIRS2MW)” that consists of 68 participants per-forming n-back tasks where increased n represents the intensity of the mental workload. Our proposed deep convolutional neural network (DCNN) comprises six convolutional layers. Our DCNN achieves a performance gain of 28 % and 4 % comparing the state-of-the-art models EEGnet and Deep ConvNet, respectively.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Classification of mental workload has always been considered a crucial task in the literature related to brain mem-ory. People perform various tasks and have multiple cognitive workloads. This mental workload can be sensed in a non-intrusive way using Functional near-infrared spectroscopy (fNIRS) sig-nals. fNIRS is a photosensitive brain examining method which uses near-infrared spectroscopy to measure aspects of brain functions and activities. In this work, we focus on classifying segmented mental workload from fNIRS signals. We propose a deep convolutional neural (DCNN) network to classify mental workload. We evaluate our model performance using the publicly available large-scale open-access dataset, “Tufts fNIRS to Mental Workload (fNIRS2MW)” that consists of 68 participants per-forming n-back tasks where increased n represents the intensity of the mental workload. Our proposed deep convolutional neural network (DCNN) comprises six convolutional layers. Our DCNN achieves a performance gain of 28 % and 4 % comparing the state-of-the-art models EEGnet and Deep ConvNet, respectively.