Stock price prediction based on PCA-LSTM model

Xinyuan Zheng, Naiping Xiong
{"title":"Stock price prediction based on PCA-LSTM model","authors":"Xinyuan Zheng, Naiping Xiong","doi":"10.1145/3545839.3545852","DOIUrl":null,"url":null,"abstract":"In order to improve the prediction accuracy, this study proposes an new PCA-LSTM neural network stock price prediction model that combines principal component analysis(PCA) and long-term and short-term memory neural network (LSTM). We download time series indicators and technical indicators of PingAn insurance (X601318) form Tushare interface and Wind database. PCA method was used to reduce the technical indicators dimension, LSTM model was used to predict the next day stock closing price. The results show that PCA-LSTM model can greatly reduce data redundancy and obtain better prediction accuracy compared with the simple LSTM model. Additional Keywords and Phrases: stock price prediction, PCA, LSTM","PeriodicalId":249161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545839.3545852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to improve the prediction accuracy, this study proposes an new PCA-LSTM neural network stock price prediction model that combines principal component analysis(PCA) and long-term and short-term memory neural network (LSTM). We download time series indicators and technical indicators of PingAn insurance (X601318) form Tushare interface and Wind database. PCA method was used to reduce the technical indicators dimension, LSTM model was used to predict the next day stock closing price. The results show that PCA-LSTM model can greatly reduce data redundancy and obtain better prediction accuracy compared with the simple LSTM model. Additional Keywords and Phrases: stock price prediction, PCA, LSTM
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA-LSTM模型的股票价格预测
为了提高预测精度,本研究提出了一种结合主成分分析(PCA)和长短期记忆神经网络(LSTM)的PCA-LSTM神经网络股票价格预测模型。我们从图共享接口和风德数据库中下载平安保险(X601318)的时间序列指标和技术指标。采用主成分分析法降维技术指标,采用LSTM模型预测翌日股票收盘价。结果表明,与简单的LSTM模型相比,PCA-LSTM模型可以大大减少数据冗余,获得更好的预测精度。附加关键词:股价预测,PCA, LSTM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simplicial Bernstein form and positivity certificates for solutions obtained in a stationary digital twin by Bernstein Bubnov-Galerkin method The Classification of Chinese Personal Income Level Based on Bayesian Network A new proposal of power series method to solve the Navier-Stokes equations: application contexts and perspectives Risk Factors Associated with Hospital Unwarned Appointment Absenteeism: A logistic binary regression approach Impact of Relativity on the Theoretical Limit for the Periodic System of Elements beyond Uranium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1