Fast-Converging Congestion Control in Datacenter Networks

Yukun Zhou, Dezun Dong, Zhengbin Pang, Junhong Ye, Feng Jin
{"title":"Fast-Converging Congestion Control in Datacenter Networks","authors":"Yukun Zhou, Dezun Dong, Zhengbin Pang, Junhong Ye, Feng Jin","doi":"10.1109/ISCC55528.2022.9912977","DOIUrl":null,"url":null,"abstract":"The widespread deployment of Remote Direct Memory Access (RDMA) in datacenter networks increases the stringency for convergence speed when congestion occurs. Fast convergence significantly reduces buffer occupancy, which in turn lessens the probability of triggering Priority-based Flow Control (PFC). Besides, the propagation delay becomes shorter with rapidly growing link speed, which correspondingly makes the queueing delay a major part of end-to-end latency. Fast convergence and low buffer occupancy become more essential for lowering queue delay and flow complete time. We present DQCC (Double-Q Congestion Control), a fast-converging congestion control scheme, which consists of two fundamental components: (i) an ECN-marking-ratio-based queue buffer occupancy estimating (QBOE) solution and (ii) a queue-building-rate driven rate adjustment (QDRA) mechanism to achieve fast convergence. We conduct extensive experiments to evaluate the performance of DQCC, and the results show that DQCC greatly accelerates the convergence process. DQCC achieves low tail latency and low buffer occupancy simultaneously.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread deployment of Remote Direct Memory Access (RDMA) in datacenter networks increases the stringency for convergence speed when congestion occurs. Fast convergence significantly reduces buffer occupancy, which in turn lessens the probability of triggering Priority-based Flow Control (PFC). Besides, the propagation delay becomes shorter with rapidly growing link speed, which correspondingly makes the queueing delay a major part of end-to-end latency. Fast convergence and low buffer occupancy become more essential for lowering queue delay and flow complete time. We present DQCC (Double-Q Congestion Control), a fast-converging congestion control scheme, which consists of two fundamental components: (i) an ECN-marking-ratio-based queue buffer occupancy estimating (QBOE) solution and (ii) a queue-building-rate driven rate adjustment (QDRA) mechanism to achieve fast convergence. We conduct extensive experiments to evaluate the performance of DQCC, and the results show that DQCC greatly accelerates the convergence process. DQCC achieves low tail latency and low buffer occupancy simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据中心网络中的快速收敛拥塞控制
RDMA (Remote Direct Memory Access)技术在数据中心网络中的广泛应用,提高了在发生拥塞时收敛速度的严密性。快速收敛显著减少了缓冲区占用,从而降低了触发基于优先级的流量控制(PFC)的概率。此外,随着链路速度的快速增长,传播延迟变得越来越短,相应地,排队延迟成为端到端延迟的主要部分。快速收敛和低缓冲区占用对于降低队列延迟和流完成时间至关重要。我们提出了一种快速收敛的拥塞控制方案DQCC (Double-Q拥塞控制),它由两个基本组成部分组成:(i)基于ecn标记比率的队列缓冲区占用估计(QBOE)解决方案和(ii)实现快速收敛的队列构建速率驱动的速率调整(QDRA)机制。我们进行了大量的实验来评估DQCC的性能,结果表明DQCC大大加快了收敛过程。DQCC同时实现了低尾延迟和低缓冲区占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1