Improvement the schemes and models of detecting network traffic anomalies on computer systems

Yusupov Sabirjan Yusupdjanovich, Gulomov Sherzod Rajaboevich
{"title":"Improvement the schemes and models of detecting network traffic anomalies on computer systems","authors":"Yusupov Sabirjan Yusupdjanovich, Gulomov Sherzod Rajaboevich","doi":"10.1109/AICT50176.2020.9368781","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to the classification of network anomalies and provides a description of the relationship of anomalies classified due to the occurrence and nature of changes in network traffic. A scheme for detecting network anomalies and abuses based on network traffic indicators also models for identifying and detecting network anomalies are presented.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an approach to the classification of network anomalies and provides a description of the relationship of anomalies classified due to the occurrence and nature of changes in network traffic. A scheme for detecting network anomalies and abuses based on network traffic indicators also models for identifying and detecting network anomalies are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进计算机系统网络流量异常检测的方案和模型
本文提出了一种网络异常分类的方法,描述了网络流量变化的发生和性质所分类的异常之间的关系。提出了一种基于网络流量指标的网络异常和滥用检测方案,以及识别和检测网络异常的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based open infrastructure for URL filtering in an Internet browser 2D Amplitude-Only Microwave Tomography Algorithm for Breast-Cancer Detection Information Extraction from Arabic Law Documents An Experimental Design Approach to Analyse the Performance of Island-Based Parallel Artificial Bee Colony Algorithm Automation Check Vulnerabilities Of Access Points Based On 802.11 Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1