Performance estimation of noisy speech recognition using spectral distortion and SNR of noise-reduced speech

Guo Ling, Takeshi Yamada, S. Makino, N. Kitawaki
{"title":"Performance estimation of noisy speech recognition using spectral distortion and SNR of noise-reduced speech","authors":"Guo Ling, Takeshi Yamada, S. Makino, N. Kitawaki","doi":"10.1109/TENCON.2013.6718993","DOIUrl":null,"url":null,"abstract":"To ensure a satisfactory QoE (Quality of Experience) and facilitate system design in speech recognition services, it is essential to establish a method that can be used to efficiently investigate recognition performance in different noise environments. Previously, we proposed a performance estimation method using the PESQ (Perceptual Evaluation of Speech Quality) as a spectral distortion measure. However, there is the problem that the relationship between the recognition performance and the distortion value differs depending on the noise reduction algorithm used. To solve this problem, we propose a novel performance estimation method that uses an estimator defined as a function of the distortion value and the SNR (Signal to Noise Ratio) of noise-reduced speech. The estimator is applicable to different noise reduction algorithms without any modification. We confirmed the effectiveness of the proposed method by experiments using the AURORA-2J connected digit recognition task and four different noise reduction algorithms.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To ensure a satisfactory QoE (Quality of Experience) and facilitate system design in speech recognition services, it is essential to establish a method that can be used to efficiently investigate recognition performance in different noise environments. Previously, we proposed a performance estimation method using the PESQ (Perceptual Evaluation of Speech Quality) as a spectral distortion measure. However, there is the problem that the relationship between the recognition performance and the distortion value differs depending on the noise reduction algorithm used. To solve this problem, we propose a novel performance estimation method that uses an estimator defined as a function of the distortion value and the SNR (Signal to Noise Ratio) of noise-reduced speech. The estimator is applicable to different noise reduction algorithms without any modification. We confirmed the effectiveness of the proposed method by experiments using the AURORA-2J connected digit recognition task and four different noise reduction algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱失真和降噪语音信噪比的噪声语音识别性能估计
为了确保语音识别服务获得满意的QoE(体验质量)并促进系统设计,建立一种可用于有效研究不同噪声环境下识别性能的方法至关重要。之前,我们提出了一种使用PESQ(语音质量感知评价)作为频谱失真度量的性能估计方法。然而,存在的问题是,识别性能与失真值之间的关系取决于所使用的降噪算法。为了解决这个问题,我们提出了一种新的性能估计方法,该方法使用一个定义为失真值和降噪语音信噪比的函数的估计器。该估计器适用于不同的降噪算法,无需任何修改。我们通过使用AURORA-2J连接数字识别任务和四种不同的降噪算法验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
W-band ultra-low-power sub-harmonic mixer for automotive radar in 65nm CMOS A study on digital filter banks for reconstruction of uniformly sampled signals from nonuniform samples Development of a rectenna for batteryless electronic paper On the performance of SVD estimation in Saleh-Valenzuela channel for UWB system Development of dual band digitally controlled oscillator using Fibonacci sequence in 0.18 um CMOS process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1