Valid interpretation of feature relevance for linear data mappings

Benoît Frénay, Daniela Hofmann, Alexander Schulz, Michael Biehl, B. Hammer
{"title":"Valid interpretation of feature relevance for linear data mappings","authors":"Benoît Frénay, Daniela Hofmann, Alexander Schulz, Michael Biehl, B. Hammer","doi":"10.1109/CIDM.2014.7008661","DOIUrl":null,"url":null,"abstract":"Linear data transformations constitute essential operations in various machine learning algorithms, ranging from linear regression up to adaptive metric transformation. Often, linear scalings are not only used to improve the model accuracy, rather feature coefficients as provided by the mapping are interpreted as an indicator for the relevance of the feature for the task at hand. This principle, however, can be misleading in particular for high-dimensional or correlated features, since it easily marks irrelevant features as relevant or vice versa. In this contribution, we propose a mathematical formalisation of the minimum and maximum feature relevance for a given linear transformation which can efficiently be solved by means of linear programming. We evaluate the method in several benchmarks, where it becomes apparent that the minimum and maximum relevance closely resembles what is often referred to as weak and strong relevance of the features; hence unlike the mere scaling provided by the linear mapping, it ensures valid interpretability.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Linear data transformations constitute essential operations in various machine learning algorithms, ranging from linear regression up to adaptive metric transformation. Often, linear scalings are not only used to improve the model accuracy, rather feature coefficients as provided by the mapping are interpreted as an indicator for the relevance of the feature for the task at hand. This principle, however, can be misleading in particular for high-dimensional or correlated features, since it easily marks irrelevant features as relevant or vice versa. In this contribution, we propose a mathematical formalisation of the minimum and maximum feature relevance for a given linear transformation which can efficiently be solved by means of linear programming. We evaluate the method in several benchmarks, where it becomes apparent that the minimum and maximum relevance closely resembles what is often referred to as weak and strong relevance of the features; hence unlike the mere scaling provided by the linear mapping, it ensures valid interpretability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性数据映射中特征相关性的有效解释
线性数据转换构成了各种机器学习算法的基本操作,从线性回归到自适应度量转换。通常,线性缩放不仅用于提高模型精度,而且由映射提供的特征系数被解释为与手头任务的特征相关性的指示器。然而,这个原则可能会产生误导,特别是对于高维或相关的特征,因为它很容易将不相关的特征标记为相关的,反之亦然。在这篇贡献中,我们提出了给定线性变换的最小和最大特征相关性的数学形式化,可以通过线性规划有效地求解。我们在几个基准测试中评估了该方法,很明显,最小和最大相关性非常类似于通常被称为弱相关性和强相关性的特征;因此,与线性映射提供的单纯缩放不同,它确保了有效的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1