Exploiting Symmetries of Distributions in CNNs and Folded Coding

Ehsan Emad Marvasti, Amir Emad Marvasti, H. Foroosh
{"title":"Exploiting Symmetries of Distributions in CNNs and Folded Coding","authors":"Ehsan Emad Marvasti, Amir Emad Marvasti, H. Foroosh","doi":"10.1109/CRV.2018.00017","DOIUrl":null,"url":null,"abstract":"We introduce the concept of Folded Coding\" for continuous univariate distributions estimating the distribution and coding the samples simultaneously. Folded Coding assumes symmetries in the distribution and requires significantly fewer parameters compared to conventional models when the symmetry assumption is satisfied. We incorporate the mechanics of Folded Coding into Convolutional Neural Networks (CNN) in the form of layers referred to as Binary Expanded ReLU (BEReLU) Shared Convolutions and Instance Fully Connected (I-FC). BEReLU and I-FC force the network to have symmetric functionality in the space of samples. Therefore similar patterns of prediction are applied to sections of the space where the model does not have observed samples. We experimented with BEReLU on generic networks using different parameter sizes on CIFAR-10 and CIFAR-100. Our experiments show increased accuracy of the models equipped with the BEReLU layer when there are fewer parameters. The performance of the models with BEReLU layer remains similar to original network with the increase of parameter number. The experiments provide further evidence that estimation of distribution symmetry is part of CNNs' functionality.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept of Folded Coding" for continuous univariate distributions estimating the distribution and coding the samples simultaneously. Folded Coding assumes symmetries in the distribution and requires significantly fewer parameters compared to conventional models when the symmetry assumption is satisfied. We incorporate the mechanics of Folded Coding into Convolutional Neural Networks (CNN) in the form of layers referred to as Binary Expanded ReLU (BEReLU) Shared Convolutions and Instance Fully Connected (I-FC). BEReLU and I-FC force the network to have symmetric functionality in the space of samples. Therefore similar patterns of prediction are applied to sections of the space where the model does not have observed samples. We experimented with BEReLU on generic networks using different parameter sizes on CIFAR-10 and CIFAR-100. Our experiments show increased accuracy of the models equipped with the BEReLU layer when there are fewer parameters. The performance of the models with BEReLU layer remains similar to original network with the increase of parameter number. The experiments provide further evidence that estimation of distribution symmetry is part of CNNs' functionality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用cnn分布的对称性和折叠编码
对于连续单变量分布,我们引入了“折叠编码”的概念,在估计分布的同时对样本进行编码。折叠编码假设分布是对称的,在满足对称假设的情况下,与传统模型相比,折叠编码所需的参数要少得多。我们将折叠编码的机制以称为二进制扩展ReLU (BEReLU)共享卷积和实例完全连接(I-FC)层的形式纳入卷积神经网络(CNN)。BEReLU和I-FC迫使网络在样本空间中具有对称功能。因此,类似的预测模式应用于模型没有观察到样本的空间部分。我们在CIFAR-10和CIFAR-100上使用不同的参数大小在通用网络上对BEReLU进行了实验。我们的实验表明,当参数较少时,配备BEReLU层的模型精度提高。随着参数数的增加,带有BEReLU层的模型的性能与原始网络基本一致。实验进一步证明,估计分布对称性是cnn功能的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1