Performance and Complexity Analysis of SIC and OSIC Detectors for Massive MIMO Systems

Evelyn Solange Pérez Aguirre, Verónica Emma Soria Maldonado, Lenin Wladimir Aucatoma Guaman, German Vicente Arevalo Bermeo
{"title":"Performance and Complexity Analysis of SIC and OSIC Detectors for Massive MIMO Systems","authors":"Evelyn Solange Pérez Aguirre, Verónica Emma Soria Maldonado, Lenin Wladimir Aucatoma Guaman, German Vicente Arevalo Bermeo","doi":"10.1109/ETCM53643.2021.9590746","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of the efficiency and computational complexity of successive interference cancellation (SIC) and ordered successive interference cancellation (OSIC) detectors in massive MIMO systems using QAM modulation. The challenge for the signal detectors of these systems is that as the number of antennas increases the detector complexity also increases. Therefore, so is important to have an efficient low-complexity detector. These four detectors are evaluated in a system of 16 antennas in transmission, 64, 100 and 200 antennas in reception using 4 QAM, 16 QAM, and 64QAM modulators, to evaluate the efficiency and computational complexity of each detector by increasing the number of receiving antennas and with different QAM modulation. With the result that increasing the number of antennas and decreasing the modulation index improves the performance of the system, since the higher the gain, the lower the probability of signal loss. The evaluation of the detectors in these systems shows that the OSIC detectors present better performance but have greater computational complexity.","PeriodicalId":438567,"journal":{"name":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM53643.2021.9590746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparison of the efficiency and computational complexity of successive interference cancellation (SIC) and ordered successive interference cancellation (OSIC) detectors in massive MIMO systems using QAM modulation. The challenge for the signal detectors of these systems is that as the number of antennas increases the detector complexity also increases. Therefore, so is important to have an efficient low-complexity detector. These four detectors are evaluated in a system of 16 antennas in transmission, 64, 100 and 200 antennas in reception using 4 QAM, 16 QAM, and 64QAM modulators, to evaluate the efficiency and computational complexity of each detector by increasing the number of receiving antennas and with different QAM modulation. With the result that increasing the number of antennas and decreasing the modulation index improves the performance of the system, since the higher the gain, the lower the probability of signal loss. The evaluation of the detectors in these systems shows that the OSIC detectors present better performance but have greater computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO系统中SIC和OSIC探测器的性能和复杂性分析
本文比较了采用QAM调制的大规模MIMO系统中连续干扰抵消(SIC)和有序连续干扰抵消(OSIC)探测器的效率和计算复杂度。这些系统的信号探测器所面临的挑战是,随着天线数量的增加,探测器的复杂性也在增加。因此,拥有一个高效的低复杂度检测器非常重要。采用4QAM、16 QAM和64QAM调制器,在16根天线发射、64根、100根和200根天线接收的系统中对这四种探测器进行了评估,通过增加接收天线数量和不同QAM调制来评估每种探测器的效率和计算复杂度。结果表明,增加天线数和减小调制指数可以提高系统的性能,因为增益越高,信号丢失的概率越小。对这些系统中检测器的评估表明,OSIC检测器具有更好的性能,但其计算复杂度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relevant and Non-Redundant Feature Subset Selection Applied to the Detection of Malware in a Network Multi-objective Optimization of Active and Reactive Power to assess Bus Loadability Limit On the Monitoring of the Electromagnetic Fields Accompanying the Seismic and Volcanic Activity of the Chiles Volcano: Preliminary Results Text-based CAPTCHA Vulnerability Assessment using a Deep Learning-based Solver Secure Systems via Reconfigurable Intelligent Surfaces over Correlated Rayleigh Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1