{"title":"Analytical performance evaluation of multi-dimensional Tensor-ESPRIT-based algorithms for strictly non-circular sources","authors":"Jens Steinwandt, F. Roemer, M. Haardt","doi":"10.1109/SAM.2016.7569659","DOIUrl":null,"url":null,"abstract":"Exploiting inherent signal structure is a common approach towards improving the performance of conventional parameter estimation algorithms. It has recently been shown that the multi-dimensional (RD) nature of the signals and their statistical properties, i.e., their second-order (SO) strictly non-circular (NC) structure, can be exploited simultaneously by R-D NC Tensor-ESPRIT-type algorithms. In this contribution, we develop an analytical first-order performance evaluation of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for high SNRs or a large sample size. Moreover, apart from a zero mean and finite SO moments, no assumptions on the noise statistics are required. We show that as in the corresponding NC matrix case, the performance of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT is asymptotically identical. Simulations verify the derived expressions.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Exploiting inherent signal structure is a common approach towards improving the performance of conventional parameter estimation algorithms. It has recently been shown that the multi-dimensional (RD) nature of the signals and their statistical properties, i.e., their second-order (SO) strictly non-circular (NC) structure, can be exploited simultaneously by R-D NC Tensor-ESPRIT-type algorithms. In this contribution, we develop an analytical first-order performance evaluation of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., they become exact for high SNRs or a large sample size. Moreover, apart from a zero mean and finite SO moments, no assumptions on the noise statistics are required. We show that as in the corresponding NC matrix case, the performance of R-D NC Standard Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT is asymptotically identical. Simulations verify the derived expressions.