{"title":"Point and beam-sparse radio astronomical source recovery using non-negative least squares","authors":"S. Naghibzadeh, A. M. Sardarabadi, A. V. D. Veen","doi":"10.1109/SAM.2016.7569681","DOIUrl":null,"url":null,"abstract":"A simple and novel algorithm for source recovery based on array data measurements in radio astronomy is proposed. Considering that a radioastronomical image is composed of both point sources and extended emissions, prior information on the images, namely non-negativity and substantial black background are taken into account to choose source representation basis functions. Dirac delta functions are chosen to represent point sources and a Gaussian function approximated from the main beam of the antenna array is selected to capture the extended emissions. We apply the non-negative least squares (NNLS) algorithm to estimate the basis coefficients. It is shown that the sparsity promoted by the NNLS algorithm based on the chosen basis functions results in a super-resolution (finer resolution than prescribed by the main beam of the antenna array pattern) estimate for the point sources and smooth recovery for the extended emissions.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A simple and novel algorithm for source recovery based on array data measurements in radio astronomy is proposed. Considering that a radioastronomical image is composed of both point sources and extended emissions, prior information on the images, namely non-negativity and substantial black background are taken into account to choose source representation basis functions. Dirac delta functions are chosen to represent point sources and a Gaussian function approximated from the main beam of the antenna array is selected to capture the extended emissions. We apply the non-negative least squares (NNLS) algorithm to estimate the basis coefficients. It is shown that the sparsity promoted by the NNLS algorithm based on the chosen basis functions results in a super-resolution (finer resolution than prescribed by the main beam of the antenna array pattern) estimate for the point sources and smooth recovery for the extended emissions.