Point and beam-sparse radio astronomical source recovery using non-negative least squares

S. Naghibzadeh, A. M. Sardarabadi, A. V. D. Veen
{"title":"Point and beam-sparse radio astronomical source recovery using non-negative least squares","authors":"S. Naghibzadeh, A. M. Sardarabadi, A. V. D. Veen","doi":"10.1109/SAM.2016.7569681","DOIUrl":null,"url":null,"abstract":"A simple and novel algorithm for source recovery based on array data measurements in radio astronomy is proposed. Considering that a radioastronomical image is composed of both point sources and extended emissions, prior information on the images, namely non-negativity and substantial black background are taken into account to choose source representation basis functions. Dirac delta functions are chosen to represent point sources and a Gaussian function approximated from the main beam of the antenna array is selected to capture the extended emissions. We apply the non-negative least squares (NNLS) algorithm to estimate the basis coefficients. It is shown that the sparsity promoted by the NNLS algorithm based on the chosen basis functions results in a super-resolution (finer resolution than prescribed by the main beam of the antenna array pattern) estimate for the point sources and smooth recovery for the extended emissions.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A simple and novel algorithm for source recovery based on array data measurements in radio astronomy is proposed. Considering that a radioastronomical image is composed of both point sources and extended emissions, prior information on the images, namely non-negativity and substantial black background are taken into account to choose source representation basis functions. Dirac delta functions are chosen to represent point sources and a Gaussian function approximated from the main beam of the antenna array is selected to capture the extended emissions. We apply the non-negative least squares (NNLS) algorithm to estimate the basis coefficients. It is shown that the sparsity promoted by the NNLS algorithm based on the chosen basis functions results in a super-resolution (finer resolution than prescribed by the main beam of the antenna array pattern) estimate for the point sources and smooth recovery for the extended emissions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非负最小二乘法恢复点和波束稀疏射电天文源
提出了一种基于射电天文学中阵列数据测量的简单、新颖的源恢复算法。考虑到射电天文图像由点源和扩展发射组成,考虑图像的先验信息,即非负性和大量黑色背景,选择源表示基函数。选择狄拉克函数表示点源,选择从天线阵列的主波束近似的高斯函数来捕获扩展发射。我们采用非负最小二乘(NNLS)算法来估计基系数。结果表明,基于所选基函数的NNLS算法提高了稀疏性,对点源进行了超分辨率估计(比天线阵列方向图的主波束规定的分辨率更精细),对扩展发射进行了平滑恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simplified performance comparison metric based on asymptotic threshold ranking for MIMO radar estimation Performance improvement for wideband DOA estimation with white noise reduction based on uniform linear arrays Hardware design and optimal ADC resolution for uplink massive MIMO systems Point and beam-sparse radio astronomical source recovery using non-negative least squares Privacy preserving decentralized power system state estimation with phasor measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1