On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization

M. Joerger, Julian Wang, A. Hassani
{"title":"On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization","authors":"M. Joerger, Julian Wang, A. Hassani","doi":"10.1109/iv51971.2022.9827445","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络激光雷达定位的不确定性量化研究
在本文中,我们开发并评估了一种基于卷积神经网络(CNN)的光探测和测距(LiDAR)定位算法,该算法包括用于地面车辆导航的不确定性量化。本文建立在之前的研究基础上,我们使用CNN利用激光雷达点云(pc)来估计漫游者的位置和方向(姿势)。本文提出了一种激光雷达PC处理的简化方法,并描述了一种新的输出协方差矩阵的方法。性能评估是在一个结构化的静态实验室环境中进行的,使用配备激光雷达的漫游者沿着固定的、重复的轨迹移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1