{"title":"On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization","authors":"M. Joerger, Julian Wang, A. Hassani","doi":"10.1109/iv51971.2022.9827445","DOIUrl":null,"url":null,"abstract":"In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop and evaluate a Convolutional Neural Network (CNN)-based Light Detection and Ranging (LiDAR) localization algorithm that includes uncertainty quantification for ground vehicle navigation. This paper builds upon prior research where we used a CNN to estimate a rover’s position and orientation (pose) using LiDAR point clouds (PCs). This paper presents a simplification of the LiDAR PC processing and describes a new approach for outputting a covariance matrix in addition to the rover pose estimates. Performance assessment is carried out in a structured, static lab environment using a LiDAR-equipped rover moving along a fixed, repeated trajectory.