Distributed privacy-preserving P2P data mining via probabilistic neural network committee machines

Y. Kokkinos, K. Margaritis
{"title":"Distributed privacy-preserving P2P data mining via probabilistic neural network committee machines","authors":"Y. Kokkinos, K. Margaritis","doi":"10.1109/IISA.2013.6623688","DOIUrl":null,"url":null,"abstract":"This work describes a probabilistic neural network (PNN) committee machine for Peer-to-Peer data mining. The pattern neurons of the PNN committee are composed of locally trained class-specialized regularization network Peer classifiers. The training takes into account the asynchronous distributed and privacy-preserving requirements that can be met in P2P systems. The Peer classifiers are first trained in parallel based on their local data. While no local data exchange is possible among them, the peers can exchange their classifiers in the form of binaries, or agents. Then an asynchronous distributed computing P2P cycle is executed to construct a mutual validation matrix. The train set of one Peer becomes the validation set of the other and only average rates are returned back. From this matrix we demonstrate that it is possible to perform weight based ensemble selection of best peer members for every class and in this way to find class-specialized Peer modules for the committee machine.","PeriodicalId":261368,"journal":{"name":"IISA 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2013.6623688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work describes a probabilistic neural network (PNN) committee machine for Peer-to-Peer data mining. The pattern neurons of the PNN committee are composed of locally trained class-specialized regularization network Peer classifiers. The training takes into account the asynchronous distributed and privacy-preserving requirements that can be met in P2P systems. The Peer classifiers are first trained in parallel based on their local data. While no local data exchange is possible among them, the peers can exchange their classifiers in the form of binaries, or agents. Then an asynchronous distributed computing P2P cycle is executed to construct a mutual validation matrix. The train set of one Peer becomes the validation set of the other and only average rates are returned back. From this matrix we demonstrate that it is possible to perform weight based ensemble selection of best peer members for every class and in this way to find class-specialized Peer modules for the committee machine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过概率神经网络委员会机进行分布式隐私保护 P2P 数据挖掘
本作品介绍了一种用于点对点数据挖掘的概率神经网络(PNN)委员会机器。PNN 委员会的模式神经元由本地训练的类专用正则化网络 Peer 分类器组成。训练时考虑到了 P2P 系统中可以满足的异步分布式和隐私保护要求。对等分类器首先根据其本地数据进行并行训练。虽然它们之间不可能交换本地数据,但对等体可以二进制文件或代理的形式交换分类器。然后执行异步分布式计算 P2P 循环,构建相互验证矩阵。一个对等者的训练集成为另一个对等者的验证集,并且只返回平均率。根据该矩阵,我们可以为每个类别执行基于权重的最佳同行成员集合选择,并通过这种方式为委员会机器找到类别专用的同行模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an IoT Smart City framework Uncertainty reasoning for the Semantic Web based on Dempster-Shafer model Open data for e-government the Greek case On the creation of a Digital Cultural Heritage Map Density-based Kernel Scale estimation for Kernel clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1