Development of magnetic coupling with variable thrust structure for flywheel energy storage system in long lifetime UPS

D. Sato, J. Itoh, Tomoki Watanabe, K. Kawagoe, N. Yamada, Koji Kato
{"title":"Development of magnetic coupling with variable thrust structure for flywheel energy storage system in long lifetime UPS","authors":"D. Sato, J. Itoh, Tomoki Watanabe, K. Kawagoe, N. Yamada, Koji Kato","doi":"10.1109/INTLEC.2015.7572479","DOIUrl":null,"url":null,"abstract":"This paper introduces the flywheel energy storage system (FESS) in a long lifetime uninterruptible power supply. The first prototype FESS (3.0-MJ) uses low cost ball bearings and general purpose induction motor in terms of cost reduction. From the experimental results, it is confirmed that the charge and discharge efficiency of the FESS is 60.7% (charge 80.7%, discharge 75.1%). In order to improve the efficiency and lifetime, a permanent magnet synchronous motor, a spherical spiral groove bearing and a magnetic coupling with variable thrust structure are applied to the second prototype. The estimated charging efficiency is achieved to 86.9% and the estimated discharging efficiency is achieved to 82.8% at the second prototype. Then, the thrust of the proposed magnetic coupling is analyzed by the finite element method (FEM). As a result, the thrust can be changed by 11.1% with the electromagnet. In addition, the thrust analysis results are evaluated by using the prototype electromagnet.","PeriodicalId":211948,"journal":{"name":"2015 IEEE International Telecommunications Energy Conference (INTELEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2015.7572479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces the flywheel energy storage system (FESS) in a long lifetime uninterruptible power supply. The first prototype FESS (3.0-MJ) uses low cost ball bearings and general purpose induction motor in terms of cost reduction. From the experimental results, it is confirmed that the charge and discharge efficiency of the FESS is 60.7% (charge 80.7%, discharge 75.1%). In order to improve the efficiency and lifetime, a permanent magnet synchronous motor, a spherical spiral groove bearing and a magnetic coupling with variable thrust structure are applied to the second prototype. The estimated charging efficiency is achieved to 86.9% and the estimated discharging efficiency is achieved to 82.8% at the second prototype. Then, the thrust of the proposed magnetic coupling is analyzed by the finite element method (FEM). As a result, the thrust can be changed by 11.1% with the electromagnet. In addition, the thrust analysis results are evaluated by using the prototype electromagnet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长寿命UPS飞轮储能系统变推力磁力联轴器的研制
介绍了飞轮储能系统在长寿命不间断电源中的应用。第一个原型FESS (3.0-MJ)在降低成本方面使用低成本的滚珠轴承和通用感应电机。实验结果证实,FESS的充放电效率为60.7%(充电80.7%,放电75.1%)。为了提高效率和寿命,在第二样机上采用了永磁同步电机、球面螺旋槽轴承和变推力结构的磁力联轴器。在第二个原型机上,估计充电效率为86.9%,估计放电效率为82.8%。然后,采用有限元法对所提出的磁力联轴器的推力进行了分析。结果表明,电磁铁可使推力改变11.1%。此外,利用原型电磁铁对推力分析结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy Optimization Model (EOM) to reduce mobile service providers network costs: A multi-objective optimization approach Peak-cut control of smart energy BTS: Power control technology for reducing the power consumed by base stations Performance characteristic of interleaved LLC resonant converter with phase shift modulation Research and application of green power system for new data centers The cost benefits of deploying line powering systems from a centralized location over an existing a copper twisted-pair outside plant to energize remote equipment in the distributed telecom network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1