Unsupervised Anomaly Detection Approach for Shift Quality Assessment Using Deep Neural Networks

Geesung Oh, Joon-Sang Park, Kyunghun Hwang, Sejoon Lim
{"title":"Unsupervised Anomaly Detection Approach for Shift Quality Assessment Using Deep Neural Networks","authors":"Geesung Oh, Joon-Sang Park, Kyunghun Hwang, Sejoon Lim","doi":"10.1109/iv51971.2022.9827200","DOIUrl":null,"url":null,"abstract":"It is necessary to calibrate the hydraulic pressure of the shift control to develop an automatic transmission (AT), and this calibration process entails a subjective shift quality assessment by experienced engineers. An objective shift quality assessment methodology has been explored for a long time to replace the engineer. The most recent data-based assessment model has attained a nearly human-like performance. However, preparing the large number of data labels required for supervised learning of the model has limitations. This study proposes an unsupervised anomaly detection model for objective shift quality assessment to address data label shortages and high data labeling costs. The proposed anomaly detection model is trained to classify a normal shift and an abnormal shift using just normal shift data. It is possible to easily obtain many train datasets from ordinary vehicles, and data labeling is not required. On the basis of real vehicle shift data, multiple anomaly detection models composed of various deep neural networks are developed and assessed. The evaluation results show that training exclusively on normal shift data can detect abnormal shifts; the best area under receiver operating characteristic curve is 0.902.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to calibrate the hydraulic pressure of the shift control to develop an automatic transmission (AT), and this calibration process entails a subjective shift quality assessment by experienced engineers. An objective shift quality assessment methodology has been explored for a long time to replace the engineer. The most recent data-based assessment model has attained a nearly human-like performance. However, preparing the large number of data labels required for supervised learning of the model has limitations. This study proposes an unsupervised anomaly detection model for objective shift quality assessment to address data label shortages and high data labeling costs. The proposed anomaly detection model is trained to classify a normal shift and an abnormal shift using just normal shift data. It is possible to easily obtain many train datasets from ordinary vehicles, and data labeling is not required. On the basis of real vehicle shift data, multiple anomaly detection models composed of various deep neural networks are developed and assessed. The evaluation results show that training exclusively on normal shift data can detect abnormal shifts; the best area under receiver operating characteristic curve is 0.902.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的无监督异常检测方法
为了开发自动变速器(AT),必须对换挡控制的液压进行校准,而这一校准过程需要经验丰富的工程师对换挡质量进行主观评估。长期以来,人们一直在探索一种客观的转移质量评价方法来取代工程师。最新的基于数据的评估模型已经达到了接近人类的表现。然而,为模型的监督学习准备大量数据标签是有局限性的。本研究提出一种无监督异常检测模型,用于客观班次质量评估,以解决数据标签短缺和高数据标签成本的问题。所提出的异常检测模型被训练成仅使用正常移位数据对正常移位和异常移位进行分类。可以很容易地从普通车辆获得许多列车数据集,并且不需要数据标记。在实际车辆换挡数据的基础上,开发并评估了由多种深度神经网络组成的多种异常检测模型。评估结果表明,仅对正常班次数据进行训练可以检测出异常班次;接收机工作特性曲线下的最佳面积为0.902。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1