{"title":"RF MEMS Switch with Enhanced Reliability","authors":"Vishal Kumar, S. Koul, A. Basu","doi":"10.1109/RFIT.2018.8524073","DOIUrl":null,"url":null,"abstract":"In this paper, a novel RF MEMS shunt switch with enhanced reliability is presented. A Ka-band shunt switch which is fabricated on a high resistivity silicon substrate implements a novel concept of tri-layer sandwich (insulator-Metal-insulator) membrane which results a lower actuation voltage of 10 Volt. The switch is actuated using electrostatic actuation mechanism and has the measured insertion loss and isolation of 1.94 dB and 18 dB at 40 GHz respectively. The switching speed of the switch is $76 \\ \\mu\\text{sec}$ and works well up to one billion cycles of operation without deterioration in performance. The switch provides a solution for low voltage communication system applications.","PeriodicalId":297122,"journal":{"name":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2018.8524073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a novel RF MEMS shunt switch with enhanced reliability is presented. A Ka-band shunt switch which is fabricated on a high resistivity silicon substrate implements a novel concept of tri-layer sandwich (insulator-Metal-insulator) membrane which results a lower actuation voltage of 10 Volt. The switch is actuated using electrostatic actuation mechanism and has the measured insertion loss and isolation of 1.94 dB and 18 dB at 40 GHz respectively. The switching speed of the switch is $76 \ \mu\text{sec}$ and works well up to one billion cycles of operation without deterioration in performance. The switch provides a solution for low voltage communication system applications.