Spatial Model of Canopy Density in Mangrove Forest of Percut Sei Tuan

N. Sulistiyono, K. Amri, P. Patana, A. S. Thoha
{"title":"Spatial Model of Canopy Density in Mangrove Forest of Percut Sei Tuan","authors":"N. Sulistiyono, K. Amri, P. Patana, A. S. Thoha","doi":"10.5220/0008388000420045","DOIUrl":null,"url":null,"abstract":"Information about canopy density is needed in many ways, for example, in estimating forest degradation and forest quality. Utilization of vegetation index values on satellite imagery can be used to predict canopy density distribution. This study aims to predict canopy density distribution in mangrove forests. The methodology used is using regression analysis by connecting Normalized Difference Vegetation Index (NDVI) value with canopy density values in the field. The NDVI value is derived from Landsat 8 satellite images, while the canopy density percentage is obtained by using a camera. The spatial distribution of canopy density is obtained through spatial modeling using Geographic Information System (GIS). The results showed that the NDVI value of the linear regression model could be used to predict the density distribution of mangrove forest canopy with r square value of 59.0% and sig value <0.005.","PeriodicalId":414686,"journal":{"name":"Proceedings of the International Conference on Natural Resources and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Natural Resources and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008388000420045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information about canopy density is needed in many ways, for example, in estimating forest degradation and forest quality. Utilization of vegetation index values on satellite imagery can be used to predict canopy density distribution. This study aims to predict canopy density distribution in mangrove forests. The methodology used is using regression analysis by connecting Normalized Difference Vegetation Index (NDVI) value with canopy density values in the field. The NDVI value is derived from Landsat 8 satellite images, while the canopy density percentage is obtained by using a camera. The spatial distribution of canopy density is obtained through spatial modeling using Geographic Information System (GIS). The results showed that the NDVI value of the linear regression model could be used to predict the density distribution of mangrove forest canopy with r square value of 59.0% and sig value <0.005.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柏山团红树林冠层密度的空间模型
在许多方面都需要关于冠层密度的信息,例如在估计森林退化和森林质量方面。利用卫星影像上的植被指数值可以预测林冠密度分布。本研究旨在预测红树林的冠层密度分布。采用回归分析方法,将归一化植被指数(NDVI)值与野外冠层密度值联系起来。NDVI值来源于Landsat 8卫星图像,而冠层密度百分比则通过相机获得。利用地理信息系统(GIS)对林冠密度进行空间建模,得到林冠密度的空间分布。结果表明:线性回归模型的NDVI值可用于预测红树林冠层密度分布,r平方值为59.0%,sig值<0.005;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Composite Flour (Wheat and Orange Sweet Potato Flour) on the Physicochemical and Sensory of Cookies Mitigation option on converted forest zone through agroforestry system for improving the hydrological function of Upper Singkil Watershed Plant Polyprenol Reductase in the Database Application of Various Species of Fungi on Avicennia Marina Growth that is 200 m Away from the Coastline in Belawan and Sembilan Island Effect of Cover Soil to Concentration of Ammonia, Nitrate, and Nitrite in Leachate with Bioreactor Landfill Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1