An windowed frequency domain interpolation algorithms for damped sinusoidal signals

R. Diao, Qingfeng Meng, Yumei Liang
{"title":"An windowed frequency domain interpolation algorithms for damped sinusoidal signals","authors":"R. Diao, Qingfeng Meng, Yumei Liang","doi":"10.1109/ICSIPA.2013.6708021","DOIUrl":null,"url":null,"abstract":"An algorithm for the estimation of parameters that characterize a multi-frequency damped sinusoidal signal is presented. At first, the signal is weighted by using the Hanning window before the fast Fourier transform (FFT), then the frequencies, amplitudes, phases and damped factors of the signal are obtained by frequency domain interpolation. It is shown that the purpose of improving the accuracy of parameter estimation is achieved by using the Hanning window which reduces the long-range leakage and by frequency domain interpolation which eliminates the short-range leakage. The sensitivity analysis of changing of the parameters, noise effect and sampling length show that, both the noise effect and spectrum interference are considered, proving the reliability and high accuracy parameter estimation in a number of engineering applications. Otherwise, the characteristics of efficient computational and low memory demands are advantageously adopted for the poor computing resources situations.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An algorithm for the estimation of parameters that characterize a multi-frequency damped sinusoidal signal is presented. At first, the signal is weighted by using the Hanning window before the fast Fourier transform (FFT), then the frequencies, amplitudes, phases and damped factors of the signal are obtained by frequency domain interpolation. It is shown that the purpose of improving the accuracy of parameter estimation is achieved by using the Hanning window which reduces the long-range leakage and by frequency domain interpolation which eliminates the short-range leakage. The sensitivity analysis of changing of the parameters, noise effect and sampling length show that, both the noise effect and spectrum interference are considered, proving the reliability and high accuracy parameter estimation in a number of engineering applications. Otherwise, the characteristics of efficient computational and low memory demands are advantageously adopted for the poor computing resources situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种阻尼正弦信号的窗频域插值算法
提出了一种多频阻尼正弦信号的参数估计算法。首先在快速傅里叶变换(FFT)前对信号进行汉宁窗加权,然后通过频域插值得到信号的频率、幅值、相位和阻尼因子。结果表明,采用汉宁窗和频域插值分别减少了远程泄漏和消除了近距离泄漏,达到了提高参数估计精度的目的。对参数变化、噪声影响和采样长度的敏感性分析表明,该方法同时考虑了噪声影响和频谱干扰,证明了该参数估计在大量工程应用中的可靠性和准确性。另外,在计算资源贫乏的情况下,有利于利用高效计算和低内存需求的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1