On-the-fly term spotting by phonetic filtering and request-driven decoding

Mickael Rouvier, G. Linarès, B. Lecouteux
{"title":"On-the-fly term spotting by phonetic filtering and request-driven decoding","authors":"Mickael Rouvier, G. Linarès, B. Lecouteux","doi":"10.1109/SLT.2008.4777901","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of on-the-fly term spotting in continuous speech streams. We propose a 2-level architecture in which recall and accuracy are sequentially optimized. The first level uses a cascade of phonetic filters to select the speech segments which probably contain the targeted terms. The second level performs a request-driven decoding of the selected speech segments. The results show good performance of the proposed system on broadcast news data : the best configuration reaches a F-measure of about 94% while respecting the on-the-fly processing constraint.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of on-the-fly term spotting in continuous speech streams. We propose a 2-level architecture in which recall and accuracy are sequentially optimized. The first level uses a cascade of phonetic filters to select the speech segments which probably contain the targeted terms. The second level performs a request-driven decoding of the selected speech segments. The results show good performance of the proposed system on broadcast news data : the best configuration reaches a F-measure of about 94% while respecting the on-the-fly processing constraint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音过滤和请求驱动解码的动态词汇识别
本文解决了连续语音流中动态术语识别问题。我们提出了一个两级架构,其中召回率和准确率依次优化。第一层使用语音过滤器级联来选择可能包含目标术语的语音片段。第二层对所选语音段执行请求驱动的解码。结果表明,所提出的系统在广播新闻数据上具有良好的性能:在尊重实时处理约束的情况下,最佳配置达到了约94%的f度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1