Finite element analysis of impactor shapes effects on puncture damage of plain woven fabric

M. F. Yahya, J. Salleh, W. Ahmad, S. A. Ghani
{"title":"Finite element analysis of impactor shapes effects on puncture damage of plain woven fabric","authors":"M. F. Yahya, J. Salleh, W. Ahmad, S. A. Ghani","doi":"10.1109/CHUSER.2012.6504408","DOIUrl":null,"url":null,"abstract":"The article presented finite element analysis work on modelling impactor shape effects on plain woven fabric puncture damage. Woven fabric models were developed with ABAQUS finite element analysis software package. Large scale woven fabric models consisting of 112 yarns in both warp and weft direction were developed with ABAQUS preprocessor module prior to simulation analysis. Woven fabric model development procedure for finite element analysis was based on the validated uniaxial tensile model reported in the earlier publication. Four impactor shapes for the simulation were flat, hemispherical, conical and ogival. The simulation results were analyzed in terms of stress-strains, post-impact kinetic energy and damage evolution. The research proposed that crimp interchange and yarn extension are two important mechanisms in woven fabric puncture.","PeriodicalId":444674,"journal":{"name":"2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHUSER.2012.6504408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The article presented finite element analysis work on modelling impactor shape effects on plain woven fabric puncture damage. Woven fabric models were developed with ABAQUS finite element analysis software package. Large scale woven fabric models consisting of 112 yarns in both warp and weft direction were developed with ABAQUS preprocessor module prior to simulation analysis. Woven fabric model development procedure for finite element analysis was based on the validated uniaxial tensile model reported in the earlier publication. Four impactor shapes for the simulation were flat, hemispherical, conical and ogival. The simulation results were analyzed in terms of stress-strains, post-impact kinetic energy and damage evolution. The research proposed that crimp interchange and yarn extension are two important mechanisms in woven fabric puncture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击器形状对平纹机织物穿刺损伤影响的有限元分析
本文介绍了冲击器形状对平纹机织物穿刺损伤影响的有限元分析工作。利用ABAQUS有限元分析软件包建立机织物模型。在进行仿真分析之前,利用ABAQUS预处理模块开发了经纬方向均为112支的大型机织物模型。有限元分析的机织织物模型开发过程基于先前出版物中报道的验证的单轴拉伸模型。模拟的四种撞击体形状分别为平面、半球形、圆锥形和卵圆形。从应力应变、冲击后动能和损伤演化等方面对模拟结果进行了分析。研究表明,卷曲交换和纱线延伸是机织物穿刺的两个重要机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between macroeconomic variables and Malaysia available Shariah Indices Static hole error analysis within laminar and turbulent regime using CFD approach Utilization of quality assurance tools in ensuring high healthcare professionals' performance in a public hospital in Malaysia A technological profiling of lexical verbs: A contrastive corpus-based analysis of L1 and L2 learner writing: Implications towards second language learning and teaching Negotiating development as an alternative mechanism in fostering sustainable development in Malaysia: A legal and planning issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1