Performances of low rank detectors based on random matrix theory with application to STAP

Alice Combernoux, F. Pascal, M. Lesturgie, G. Ginolhac
{"title":"Performances of low rank detectors based on random matrix theory with application to STAP","authors":"Alice Combernoux, F. Pascal, M. Lesturgie, G. Ginolhac","doi":"10.1109/RADAR.2014.7060457","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of target detection embedded in a disturbance composed of a low rank Gaussian clutter and a white Gaussian noise. In this context, it is interesting to use an adaptive version of the Low Rank Normalized Matched Filter detector, denoted LR-ANMF, which is a function of the estimation of the projector onto the clutter subspace. In this paper, we show that the LR-ANMF detector based on the sample covariance matrix is consistent when the number of secondary data K tends to infinity for a fixed data dimension m but not consistent when m and K both tend to infinity at the same rate, i.e. m/K → c ∈ (0, 1). Using the results of random matrix theory, we then propose a new version of the LR-ANMF which is consistent in both cases and compare it to a previous version, the LR-GSCM detector. The application of the detectors from random matrix theory on STAP (Space Time Adaptive Processing) data shows the interest of our approach.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper addresses the problem of target detection embedded in a disturbance composed of a low rank Gaussian clutter and a white Gaussian noise. In this context, it is interesting to use an adaptive version of the Low Rank Normalized Matched Filter detector, denoted LR-ANMF, which is a function of the estimation of the projector onto the clutter subspace. In this paper, we show that the LR-ANMF detector based on the sample covariance matrix is consistent when the number of secondary data K tends to infinity for a fixed data dimension m but not consistent when m and K both tend to infinity at the same rate, i.e. m/K → c ∈ (0, 1). Using the results of random matrix theory, we then propose a new version of the LR-ANMF which is consistent in both cases and compare it to a previous version, the LR-GSCM detector. The application of the detectors from random matrix theory on STAP (Space Time Adaptive Processing) data shows the interest of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机矩阵理论的低秩检测器性能及其在STAP中的应用
研究了在低阶高斯杂波和高斯白噪声干扰下的目标检测问题。在这种情况下,使用低秩归一化匹配滤波器检测器的自适应版本是很有趣的,标记为LR-ANMF,它是对杂波子空间的投影估计的函数。在本文中,我们表明,LR-ANMF探测器基于样本协方差矩阵K一致当辅助数据的数量趋于无穷时为一个固定的数据尺寸m但不一致当m和K都以同样的速度趋于无穷,即m / c K→∈(0,1)。使用随机矩阵理论的结果,然后,我们提出一个新版本的LR-ANMF一致的在这两种情况下,比较前一版本,LR-GSCM探测器。随机矩阵理论的检测器在STAP(时空自适应处理)数据上的应用表明了我们方法的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time high resolution passive WiFi Doppler-radar and its applications Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments Evaluation of the attenuation in L-band due to the foliage in function of the elevation angle Cognitive kriging metamodels for forest characterization and target detection Development of a planetary georadar prototype with agile beam (AGILE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1