Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments

C. Clemente, L. Pallotta, I. Proudler, A. De Maio, J. Soraghan, A. Farina
{"title":"Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments","authors":"C. Clemente, L. Pallotta, I. Proudler, A. De Maio, J. Soraghan, A. Farina","doi":"10.1109/RADAR.2014.7060271","DOIUrl":null,"url":null,"abstract":"In the modern battlefield scenario multiple sources of information may be exploited to mitigate uncertainty. Polarization and spatial diversity can provide useful information for specific and critical tasks such as the Automatic Target Recognition (ATR). In this paper the use of pseudo-Zernike moments applied to the full-polarimetric Gotcha dataset is presented. Specifically improved single platform ATR performance is demonstrated through the use of multiple observations.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the modern battlefield scenario multiple sources of information may be exploited to mitigate uncertainty. Polarization and spatial diversity can provide useful information for specific and critical tasks such as the Automatic Target Recognition (ATR). In this paper the use of pseudo-Zernike moments applied to the full-polarimetric Gotcha dataset is presented. Specifically improved single platform ATR performance is demonstrated through the use of multiple observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伪泽尼克矩的多传感器全极化SAR自动目标识别
在现代战场场景中,可以利用多种信息来源来减轻不确定性。极化和空间分异可以为特定和关键任务提供有用的信息,如自动目标识别(ATR)。本文介绍了伪泽尼克矩在全极化Gotcha数据集上的应用。通过使用多次观察,具体地改进了单平台ATR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time high resolution passive WiFi Doppler-radar and its applications Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments Evaluation of the attenuation in L-band due to the foliage in function of the elevation angle Cognitive kriging metamodels for forest characterization and target detection Development of a planetary georadar prototype with agile beam (AGILE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1