R. Fan, Chu-Yuan Zhang, Fang Yin, Cheng-Cheng Feng, Zhendong Ma, Hua-Bing Gong
{"title":"Finite element analysis for engine crankshaft torsional stiffness","authors":"R. Fan, Chu-Yuan Zhang, Fang Yin, Cheng-Cheng Feng, Zhendong Ma, Hua-Bing Gong","doi":"10.1504/ijspm.2019.103590","DOIUrl":null,"url":null,"abstract":"Accurate crankshaft torsional stiffness is important to build the lumped parameter model (LPM) for crankshaft torsional vibration analysis. For the crankshaft system of a four-cylinder in-line gasoline engine, a procedure to build the finite element model (FEM) is presented. And the applicability of two ways to set the equivalent mass or equivalent moment of inertia for piston-rod in FEM is declared. When building a lumped parameter model, the concept of rigid-rotation of the crank pin central section around the central line of the crankshaft is proposed, and a method to obtain the torsional angle of the central section is declared. What is more, three post-processing methods are presented to obtain the torsional stiffness coefficients. According to three load cases of no-load, half load and full load, the tests are carried out. The simulation results of FEM and LPM, and the test results have good agreement with each other.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2019.103590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accurate crankshaft torsional stiffness is important to build the lumped parameter model (LPM) for crankshaft torsional vibration analysis. For the crankshaft system of a four-cylinder in-line gasoline engine, a procedure to build the finite element model (FEM) is presented. And the applicability of two ways to set the equivalent mass or equivalent moment of inertia for piston-rod in FEM is declared. When building a lumped parameter model, the concept of rigid-rotation of the crank pin central section around the central line of the crankshaft is proposed, and a method to obtain the torsional angle of the central section is declared. What is more, three post-processing methods are presented to obtain the torsional stiffness coefficients. According to three load cases of no-load, half load and full load, the tests are carried out. The simulation results of FEM and LPM, and the test results have good agreement with each other.