{"title":"Phosphonates: Their Natural Occurrence and Physiological Role","authors":"P. Kafarski","doi":"10.5772/INTECHOPEN.87155","DOIUrl":null,"url":null,"abstract":"The first natural compound containing carbon-to-phosphorus bond—ciliatine was discovered 60 years ago, and for four decades, phosphonates were considered simply as a biological curiosity. Finding the importance of these compounds in biogeochemical phosphorus cycling, their role in methane production, as well as discovery of numerous phosphonates and phosphonopeptides of promising antibacterial and antifungal activities has stimulated the development of studies on this class of compounds, especially on their metabolism and biochemistry. These studies are driven by the use of 31 P NMR and by a clever combination of genomics and innovative chemistry by using the method of selective labeling of metabolites. These studies revealed unusual and interesting chemistry of these compounds.","PeriodicalId":156897,"journal":{"name":"Contemporary Topics about Phosphorus in Biology and Materials","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Topics about Phosphorus in Biology and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.87155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
The first natural compound containing carbon-to-phosphorus bond—ciliatine was discovered 60 years ago, and for four decades, phosphonates were considered simply as a biological curiosity. Finding the importance of these compounds in biogeochemical phosphorus cycling, their role in methane production, as well as discovery of numerous phosphonates and phosphonopeptides of promising antibacterial and antifungal activities has stimulated the development of studies on this class of compounds, especially on their metabolism and biochemistry. These studies are driven by the use of 31 P NMR and by a clever combination of genomics and innovative chemistry by using the method of selective labeling of metabolites. These studies revealed unusual and interesting chemistry of these compounds.