Engineering the 100 terabyte turbulence database (or how to track particles at home)

E. Perlman, R. Burns
{"title":"Engineering the 100 terabyte turbulence database (or how to track particles at home)","authors":"E. Perlman, R. Burns","doi":"10.1145/1188455.1188625","DOIUrl":null,"url":null,"abstract":"We describe a new environment for large-scale turbulence simulations that uses a cluster of database nodes to store the complete space-time history of fluid velocities. This allows for rapid access to high resolution data that were traditionally too large to store and too computationally expensive to produce on demand.We perform the actual experimental analysis inside the database nodes, which allows for data-intensive computations to be performed across a large number of nodes with relatively little network traffic.We currently have a limited-scale prototype system running actual turbulence simulations and are in the process of establishing a production cluster with high-resolution data. We will discuss our design choices and initial results with load balancing a data-intensive, migratory workload.","PeriodicalId":115940,"journal":{"name":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a new environment for large-scale turbulence simulations that uses a cluster of database nodes to store the complete space-time history of fluid velocities. This allows for rapid access to high resolution data that were traditionally too large to store and too computationally expensive to produce on demand.We perform the actual experimental analysis inside the database nodes, which allows for data-intensive computations to be performed across a large number of nodes with relatively little network traffic.We currently have a limited-scale prototype system running actual turbulence simulations and are in the process of establishing a production cluster with high-resolution data. We will discuss our design choices and initial results with load balancing a data-intensive, migratory workload.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计100tb的湍流数据库(或者如何在家跟踪粒子)
我们描述了一个大规模湍流模拟的新环境,它使用一组数据库节点来存储流体速度的完整时空历史。这允许快速访问高分辨率数据,这些数据传统上太大而无法存储,并且计算成本太高而无法按需生成。我们在数据库节点内执行实际的实验分析,这允许在相对较少的网络流量下跨大量节点执行数据密集型计算。我们目前有一个有限规模的原型系统,可以运行实际的湍流模拟,并正在建立一个具有高分辨率数据的生产集群。我们将讨论我们的设计选择和对数据密集型迁移工作负载进行负载平衡的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical inference for efficient microarchitectural and application analysis The meeting list tool - a shared application for sharing dynamic information in meetings Liquid cooling: a next generation data center strategy Performance and presentation production elements Implementing algorithms on FPGAs using high-level languages and low-level libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1