An Encoding-Based Back Projection Algorithm for Underground Holes Detection via Ground Penetrating Radar

Shaokun Zhang, Zhiyou Hong, Yiping Chen, Zejian Kang, Zhipeng Luo, Jonathan Li
{"title":"An Encoding-Based Back Projection Algorithm for Underground Holes Detection via Ground Penetrating Radar","authors":"Shaokun Zhang, Zhiyou Hong, Yiping Chen, Zejian Kang, Zhipeng Luo, Jonathan Li","doi":"10.1109/PRRS.2018.8486182","DOIUrl":null,"url":null,"abstract":"As underground cavities can cause ground collapse, which will make serious threat to people's safety and property. It is of great significance to implement underground cavity inspection on urban streets and roads subgrade. In the practical application of engineering, the ground penetrating radar (GPR) has shown promising for detection of underground cavities. In this paper, we propose a novel encoding-based back projection (EBP) algorithm to detect underground holes. Our proposed method has a natural filtering function and avoids the effect of trailing, which makes the target localization more accurate. The experiments use the simulation data derived from the GPR numerical simulation software (GprMax) and the measured data collected from the Latvia radar system. And the results demonstrate that the proposed method has superior performance.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As underground cavities can cause ground collapse, which will make serious threat to people's safety and property. It is of great significance to implement underground cavity inspection on urban streets and roads subgrade. In the practical application of engineering, the ground penetrating radar (GPR) has shown promising for detection of underground cavities. In this paper, we propose a novel encoding-based back projection (EBP) algorithm to detect underground holes. Our proposed method has a natural filtering function and avoids the effect of trailing, which makes the target localization more accurate. The experiments use the simulation data derived from the GPR numerical simulation software (GprMax) and the measured data collected from the Latvia radar system. And the results demonstrate that the proposed method has superior performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于编码的探地雷达地下孔探测反投影算法
由于地下洞室会引起地面塌陷,对人们的生命财产安全造成严重威胁。对城市街道、道路路基实施地下空腔检测具有重要意义。在工程实际应用中,探地雷达(GPR)在探测地下洞室方面显示出了良好的前景。本文提出了一种基于编码的反投影(EBP)算法。该方法具有自然滤波功能,避免了跟踪的影响,使目标定位更加准确。实验采用探地雷达数值模拟软件(GprMax)的模拟数据和拉脱维亚雷达系统的实测数据。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The UAV Image Classification Method Based on the Grey-Sigmoid Kernel Function Support Vector Machine Fine Registration of Mobile and Airborne LiDAR Data Based on Common Ground Points Instance Segmentation of Trees in Urban Areas from MLS Point Clouds Using Supervoxel Contexts and Graph-Based Optimization An Improved Simplex Maximum Distance Algorithm for Endmember Extraction in Hyperspectral Image End-to-End Road Centerline Extraction via Learning a Confidence Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1