Patient level analytics using self-organising maps: A case study on Type-1 Diabetes self-care survey responses

Santosh Tirunagari, N. Poh, K. Aliabadi, David Windridge, Deborah Cooke
{"title":"Patient level analytics using self-organising maps: A case study on Type-1 Diabetes self-care survey responses","authors":"Santosh Tirunagari, N. Poh, K. Aliabadi, David Windridge, Deborah Cooke","doi":"10.1109/CIDM.2014.7008682","DOIUrl":null,"url":null,"abstract":"Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自组织地图的患者水平分析:1型糖尿病自我护理调查回应的案例研究
调查问卷通常是异构的,因为它们包含定量(数字)和定性(文本)的回答,以及缺失的值。虽然传统的、基于模型的方法通常被临床医生使用,但我们部署自组织地图(SOM)作为一种可视化数据的手段。在一项旨在了解611例1型糖尿病患者自我护理行为的调查研究中,我们发现SOM可用于(1)识别合并症;(2)将相互依存的生活自理因素联系起来;(3)将个体患者资料可视化;在与临床医生和1型糖尿病专家的评估中,使用SOM提取的知识和见解符合临床期望。此外,SOM以u矩阵形式的输出被发现提供了一种有趣的替代方法来可视化患者概况,而不是通常的表格形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1