Pyramid stack data stream mining for handling concept-drifting

Zhuoran Xu, Cuiqin Hou, Yingju Xia, Jun Sun, Hiroya Inakoshi, N. Yugami
{"title":"Pyramid stack data stream mining for handling concept-drifting","authors":"Zhuoran Xu, Cuiqin Hou, Yingju Xia, Jun Sun, Hiroya Inakoshi, N. Yugami","doi":"10.1109/TENCON.2016.7847953","DOIUrl":null,"url":null,"abstract":"Data stream mining has gained growing attentions recently. Concept drift is a particular problem in data stream mining, which is defined as the distribution of data may change over time. Most of current methods try to estimate the current distribution or reconstruct the current distribution from a mixture of old distributions. They suffer problems of estimation and reconstruction error respectively. In this paper, we found that a classifier that fits the current distribution can be obtained more directly than the current methods by ensembling classifiers trained with increasing number of recent data. This strategy guarantees that no matter when and how concept drift happens, there is always a classifier that suits the current data distribution. So our method only needs to select the current distribution classifier out of all classifiers we hold. This is much easier than estimation and reconstruction. We test our method on four real world data sets. Comparing with other methods, our method is the best algorithm in terms of average accuracy.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7847953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data stream mining has gained growing attentions recently. Concept drift is a particular problem in data stream mining, which is defined as the distribution of data may change over time. Most of current methods try to estimate the current distribution or reconstruct the current distribution from a mixture of old distributions. They suffer problems of estimation and reconstruction error respectively. In this paper, we found that a classifier that fits the current distribution can be obtained more directly than the current methods by ensembling classifiers trained with increasing number of recent data. This strategy guarantees that no matter when and how concept drift happens, there is always a classifier that suits the current data distribution. So our method only needs to select the current distribution classifier out of all classifiers we hold. This is much easier than estimation and reconstruction. We test our method on four real world data sets. Comparing with other methods, our method is the best algorithm in terms of average accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理概念漂移的金字塔堆栈数据流挖掘
数据流挖掘近年来受到越来越多的关注。概念漂移是数据流挖掘中的一个特殊问题,它被定义为数据的分布可能随时间而变化。目前的大多数方法都试图估计当前分布或从旧分布的混合中重建当前分布。它们分别存在估计误差和重建误差的问题。在本文中,我们发现,与现有的分类器方法相比,通过增加最近数据的数量来集成分类器可以更直接地获得适合当前分布的分类器。这种策略保证了无论何时以及如何发生概念漂移,总有一个适合当前数据分布的分类器。所以我们的方法只需要从我们持有的所有分类器中选择当前的分布分类器。这比估算和重建要容易得多。我们在四个真实世界的数据集上测试了我们的方法。与其他方法相比,我们的方法在平均精度方面是最好的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D printing of a pavlova Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index GaN based μLED drive circuit for Visible Light Communication (VLC) with improved linearity using on-chip optical feedback Automatic image classification in intravascular optical coherence tomography images A rapid and reliable approach for optimal design of an electromagnetic nanopositioning actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1