Hierarchical Multi-turn Dialogue Generation Model Based on Double-layer Decoding

Siyu Gong, Biqing Zeng, Xiaomin Chen, Mayi Xu, Shengzhou Luo
{"title":"Hierarchical Multi-turn Dialogue Generation Model Based on Double-layer Decoding","authors":"Siyu Gong, Biqing Zeng, Xiaomin Chen, Mayi Xu, Shengzhou Luo","doi":"10.1109/ICCEA53728.2021.00030","DOIUrl":null,"url":null,"abstract":"Intelligent and accurate human-machine dialogue systems can help reduce labor costs in business. Existing models of multi-turn dialogue generation, despite their successes, still suffer from lack of contextual relevance and coherence in the generated responses. In this paper, we propose a hierarchical multi-turn dialogue generation model based on double-layer decoding (HMDM-DD) to exploit the positional relationship and contextual information of the dialogues. First, we use relative position embedding to obtain the sequence of context information, then applying the self-attention mechanism to get long-distance dependencies. Finally, we use double-layer decoding to scrutinize the generated dialogue repeatedly. Experiments on two datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues.","PeriodicalId":325790,"journal":{"name":"2021 International Conference on Computer Engineering and Application (ICCEA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Application (ICCEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEA53728.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent and accurate human-machine dialogue systems can help reduce labor costs in business. Existing models of multi-turn dialogue generation, despite their successes, still suffer from lack of contextual relevance and coherence in the generated responses. In this paper, we propose a hierarchical multi-turn dialogue generation model based on double-layer decoding (HMDM-DD) to exploit the positional relationship and contextual information of the dialogues. First, we use relative position embedding to obtain the sequence of context information, then applying the self-attention mechanism to get long-distance dependencies. Finally, we use double-layer decoding to scrutinize the generated dialogue repeatedly. Experiments on two datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双层解码的分层多回合对话生成模型
智能精准的人机对话系统可以帮助企业降低人工成本。现有的多回合对话生成模型尽管取得了成功,但在生成的响应中仍然缺乏上下文相关性和连贯性。本文提出了一种基于双层解码(HMDM-DD)的分层多回合对话生成模型,以利用对话的位置关系和上下文信息。首先利用相对位置嵌入方法获取上下文信息序列,然后利用自关注机制获取远程依赖关系。最后,我们使用双层解码来反复审查生成的对话。在两个数据集上的实验表明,我们的模型在生成信息丰富、流畅的对话方面比比较方法具有鲁棒性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Few-shot Image Classification based on LMRNet Design and Test on Acoustic Device for Actively Measuring Underwater Short Distance with High-Precision KVM PT Based Coverage Feedback Fuzzing for Network Key Devices Acoustic impedance inversion base on dual learning Numerical simulation of aerodynamic force and moored state in airship transport process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1