CFD Simulations of Oil-Water Flow Behavior in Horizontal Pipe Separator

S. Kolla, R. Mohan, O. Shoham
{"title":"CFD Simulations of Oil-Water Flow Behavior in Horizontal Pipe Separator","authors":"S. Kolla, R. Mohan, O. Shoham","doi":"10.1115/ajkfluids2019-5579","DOIUrl":null,"url":null,"abstract":"\n Horizontal Pipe Separators (HPS©) are used for separation of oil and water especially in subsea environment owing to its simplicity, installation, and operation. In the present work, the flow phenomena in the HPS with 0.0762m ID and 10.3 m long separating oil and water with specific gravities of 1 and 0.857 is simulated and analyzed using ANSYS Fluent 16. Hexahedral mesh with boundary layers has been done utilizing ANSYS design modeler for this analysis. A grid independence study is performed on 3 different mesh grids using grid convergence index. 3-D simulations are carried out using a Hybrid Eulerian-Eulerian Multifluid VOF model for watercuts ranging from 20 to 80% and a mixture velocity of 0.08 m/s. The CFD simulations analyzed the effect of watercut on the oil-water mixture flow behavior and the entry region required for the oil and water to separate in the HPS. These simulation results are validated against acquired experimental data by Othman in 2010. These simulations provide an insight to understand the effects of diameter, watercut, and mixture velocities on the performance of HPS to aid in its design and scale up/down studies.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Horizontal Pipe Separators (HPS©) are used for separation of oil and water especially in subsea environment owing to its simplicity, installation, and operation. In the present work, the flow phenomena in the HPS with 0.0762m ID and 10.3 m long separating oil and water with specific gravities of 1 and 0.857 is simulated and analyzed using ANSYS Fluent 16. Hexahedral mesh with boundary layers has been done utilizing ANSYS design modeler for this analysis. A grid independence study is performed on 3 different mesh grids using grid convergence index. 3-D simulations are carried out using a Hybrid Eulerian-Eulerian Multifluid VOF model for watercuts ranging from 20 to 80% and a mixture velocity of 0.08 m/s. The CFD simulations analyzed the effect of watercut on the oil-water mixture flow behavior and the entry region required for the oil and water to separate in the HPS. These simulation results are validated against acquired experimental data by Othman in 2010. These simulations provide an insight to understand the effects of diameter, watercut, and mixture velocities on the performance of HPS to aid in its design and scale up/down studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水平管分离器油水流动特性CFD模拟
卧式管道分离器(HPS©)由于其简单、安装和操作方便,主要用于水下环境中的油水分离。本文利用ANSYS Fluent 16对内径0.0762m、长10.3 m、比重分别为1和0.857的油水分离层内的流动现象进行了模拟分析。利用ANSYS设计建模器对具有边界层的六面体网格进行了分析。利用网格收敛指数对3种不同的网格进行了网格独立性研究。采用Hybrid Eulerian-Eulerian Multifluid VOF模型对含水率为20% ~ 80%、混合流速为0.08 m/s的流体进行了三维模拟。CFD模拟分析了含水对油水混合流动特性的影响以及油水在HPS中分离所需的进入区域。这些仿真结果与2010年Othman获得的实验数据进行了验证。这些模拟有助于了解直径、含水和混合速度对HPS性能的影响,从而帮助其设计和放大/缩小研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1