Convex optimization techniques for fitting sparse Gaussian graphical models

O. Banerjee, L. Ghaoui, A. d’Aspremont, G. Natsoulis
{"title":"Convex optimization techniques for fitting sparse Gaussian graphical models","authors":"O. Banerjee, L. Ghaoui, A. d’Aspremont, G. Natsoulis","doi":"10.1145/1143844.1143856","DOIUrl":null,"url":null,"abstract":"We consider the problem of fitting a large-scale covariance matrix to multivariate Gaussian data in such a way that the inverse is sparse, thus providing model selection. Beginning with a dense empirical covariance matrix, we solve a maximum likelihood problem with an l1-norm penalty term added to encourage sparsity in the inverse. For models with tens of nodes, the resulting problem can be solved using standard interior-point algorithms for convex optimization, but these methods scale poorly with problem size. We present two new algorithms aimed at solving problems with a thousand nodes. The first, based on Nesterov's first-order algorithm, yields a rigorous complexity estimate for the problem, with a much better dependence on problem size than interior-point methods. Our second algorithm uses block coordinate descent, updating row/columns of the covariance matrix sequentially. Experiments with genomic data show that our method is able to uncover biologically interpretable connections among genes.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

We consider the problem of fitting a large-scale covariance matrix to multivariate Gaussian data in such a way that the inverse is sparse, thus providing model selection. Beginning with a dense empirical covariance matrix, we solve a maximum likelihood problem with an l1-norm penalty term added to encourage sparsity in the inverse. For models with tens of nodes, the resulting problem can be solved using standard interior-point algorithms for convex optimization, but these methods scale poorly with problem size. We present two new algorithms aimed at solving problems with a thousand nodes. The first, based on Nesterov's first-order algorithm, yields a rigorous complexity estimate for the problem, with a much better dependence on problem size than interior-point methods. Our second algorithm uses block coordinate descent, updating row/columns of the covariance matrix sequentially. Experiments with genomic data show that our method is able to uncover biologically interpretable connections among genes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟合稀疏高斯图形模型的凸优化技术
我们考虑将大规模协方差矩阵拟合到多变量高斯数据的问题,这样逆是稀疏的,从而提供模型选择。从一个密集的经验协方差矩阵开始,我们解决了一个极大似然问题,增加了一个11范数惩罚项,以鼓励逆的稀疏性。对于具有数十个节点的模型,可以使用凸优化的标准内点算法来解决所产生的问题,但这些方法对问题规模的可扩展性很差。我们提出了两种新的算法,旨在解决一千节点的问题。第一种方法基于Nesterov的一阶算法,对问题产生了严格的复杂性估计,与内点方法相比,它对问题大小的依赖性要好得多。我们的第二个算法使用块坐标下降,按顺序更新协方差矩阵的行/列。基因组数据实验表明,我们的方法能够揭示基因之间可解释的生物学联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1