Data-driven control design for load disturbance rejection by prediction error identification

R. S. Filho, E. Boeira, L. Campestrini, D. Eckhard
{"title":"Data-driven control design for load disturbance rejection by prediction error identification","authors":"R. S. Filho, E. Boeira, L. Campestrini, D. Eckhard","doi":"10.1109/anzcc53563.2021.9628273","DOIUrl":null,"url":null,"abstract":"This paper presents a new direct data-driven control method for the load disturbance problem in a Model Reference Matching framework. It consists in embedding the controller’s design under a prediction error approach, where a flexible reference model is also identified in order to guarantee the causality and stability of the ideal controller. Due to the complexity of the proposed approach, a dedicated iterative optimization algorithm is developed to properly solve the problem. Finally, the statistical properties of the obtained estimates are explored through simulation examples, where the enhancement obtained through the proposed methodology is compared to least-squares and instrumental variable solutions.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new direct data-driven control method for the load disturbance problem in a Model Reference Matching framework. It consists in embedding the controller’s design under a prediction error approach, where a flexible reference model is also identified in order to guarantee the causality and stability of the ideal controller. Due to the complexity of the proposed approach, a dedicated iterative optimization algorithm is developed to properly solve the problem. Finally, the statistical properties of the obtained estimates are explored through simulation examples, where the enhancement obtained through the proposed methodology is compared to least-squares and instrumental variable solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预测误差辨识的负荷扰动抑制数据驱动控制设计
在模型参考匹配框架下,提出了一种新的负载扰动直接数据驱动控制方法。它包括在预测误差方法下嵌入控制器的设计,其中还识别了一个灵活的参考模型,以保证理想控制器的因果关系和稳定性。由于所提方法的复杂性,我们开发了一种专门的迭代优化算法来适当地解决这一问题。最后,通过模拟实例探讨了所得估计的统计性质,其中通过所提出的方法获得的增强与最小二乘和工具变量解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring of Froth Flotation with Transfer Learning and Principal Component Models* Mitigating Tilt Anisoplanatism with the Slope Merging Method for Multi-Conjugate Adaptive Optics Systems Effect of increased number of COVID-19 tests using supervised machine learning models Social Shaping of Linear Quadratic Multi-Agent Systems Approximating Nonlinear Model Predictive Controllers using Support Vector Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1