{"title":"Frequency Modulated Operation in a Silicon MEMS Gyroscope with Quatrefoil Suspension System","authors":"Madan Parajuli, G. Sobreviela, A. Seshia","doi":"10.1109/INERTIAL53425.2022.9787520","DOIUrl":null,"url":null,"abstract":"This paper reports a MEMS Gyroscope based on mechanical frequency modulation. The gyroscope operates by tracking the resonant frequencies of two high-Q degenerate elliptical modes (∼426 kHz) in a vacuum packaged MEMS gyroscope with a novel quatrefoil suspension system, fabricated on a (100) single-crystal silicon substrate. The frequency-based measurement of the input angular rate is realized using two digital phase-locked loops and implementing electrostatic frequency tuning to decrease the frequency split between the two near-degenerate modes from 4 Hz to 0.8 Hz. Measured results demonstrate an angle random walk (ARW) and bias instability (BI) of 0.917 ◦/$\\sqrt h $ and 6.7 ◦/h respectively, benchmarking favorably in comparison with other state-of-the-art frequency modulated (FM) gyroscopes.","PeriodicalId":435781,"journal":{"name":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL53425.2022.9787520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper reports a MEMS Gyroscope based on mechanical frequency modulation. The gyroscope operates by tracking the resonant frequencies of two high-Q degenerate elliptical modes (∼426 kHz) in a vacuum packaged MEMS gyroscope with a novel quatrefoil suspension system, fabricated on a (100) single-crystal silicon substrate. The frequency-based measurement of the input angular rate is realized using two digital phase-locked loops and implementing electrostatic frequency tuning to decrease the frequency split between the two near-degenerate modes from 4 Hz to 0.8 Hz. Measured results demonstrate an angle random walk (ARW) and bias instability (BI) of 0.917 ◦/$\sqrt h $ and 6.7 ◦/h respectively, benchmarking favorably in comparison with other state-of-the-art frequency modulated (FM) gyroscopes.