Image Encoding, Labeling, and Reconstruction from Differential Geometry

Barth E., Caelli T., Zetzsche C.
{"title":"Image Encoding, Labeling, and Reconstruction from Differential Geometry","authors":"Barth E.,&nbsp;Caelli T.,&nbsp;Zetzsche C.","doi":"10.1006/cgip.1993.1033","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider how the representation of images as surfaces, and their characterizations via surface differential forms, can be related to the concept of redundancy in the intensity signal. In contrast to common approaches, the basic surface types (planar, parabolic, elliptic/hyperbolic) are not seen as equal-priority classes, but as corresponding to different degrees of redundancy. This leads to a new approach to image representation and region labeling based upon generalized curvature measures. Furthermore, we employ different reconstruction algorithms to show that elliptic surface patches carry the significant information in natural images. Based upon deterministic and stochastic relaxation techniques, these algorithms allow one to reconstruct the original image from (i) \"elliptic intensities\" only and (ii) curvature measures which are zero for nonelliptic regions.</p></div>","PeriodicalId":100349,"journal":{"name":"CVGIP: Graphical Models and Image Processing","volume":"55 6","pages":"Pages 428-446"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cgip.1993.1033","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049965283710333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

In this paper we consider how the representation of images as surfaces, and their characterizations via surface differential forms, can be related to the concept of redundancy in the intensity signal. In contrast to common approaches, the basic surface types (planar, parabolic, elliptic/hyperbolic) are not seen as equal-priority classes, but as corresponding to different degrees of redundancy. This leads to a new approach to image representation and region labeling based upon generalized curvature measures. Furthermore, we employ different reconstruction algorithms to show that elliptic surface patches carry the significant information in natural images. Based upon deterministic and stochastic relaxation techniques, these algorithms allow one to reconstruct the original image from (i) "elliptic intensities" only and (ii) curvature measures which are zero for nonelliptic regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于微分几何的图像编码、标记和重构
在本文中,我们考虑如何将图像表示为表面,并通过表面微分形式对其进行表征,从而与强度信号中的冗余概念相关联。与常用方法相反,基本曲面类型(平面、抛物线、椭圆/双曲线)不被视为同等优先级的类,而是对应于不同程度的冗余。这导致了一种基于广义曲率度量的图像表示和区域标记的新方法。此外,我们采用不同的重建算法来证明椭圆表面斑块在自然图像中携带了重要的信息。基于确定性和随机松弛技术,这些算法允许从(i)重建原始图像。只有“椭圆强度”和(ii)非椭圆区域为零的曲率测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Dynamic Approach for Finding the Contour of Bi-Level Images Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms Estimation of Edge Parameters and Image Blur Using Polynomial Transforms Binarization and Multithresholding of Document Images Using Connectivity Novel Deconvolution of Noisy Gaussian Filters with a Modified Hermite Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1