Approximating morphological operators with part-based representations learned by asymmetric auto-encoders

Samy Blusseau, Bastien Ponchon, S. Velasco-Forero, J. Angulo, I. Bloch
{"title":"Approximating morphological operators with part-based representations learned by asymmetric auto-encoders","authors":"Samy Blusseau, Bastien Ponchon, S. Velasco-Forero, J. Angulo, I. Bloch","doi":"10.1515/mathm-2020-0102","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the issue of building a part-based representation of a dataset of images. More precisely, we look for a non-negative, sparse decomposition of the images on a reduced set of atoms, in order to unveil a morphological and explainable structure of the data. Additionally, we want this decomposition to be computed online for any new sample that is not part of the initial dataset. Therefore, our solution relies on a sparse, non-negative auto-encoder, where the encoder is deep (for accuracy) and the decoder shallow (for explainability). This method compares favorably to the state-of-the-art online methods on two benchmark datasets (MNIST and Fashion MNIST) and on a hyperspectral image, according to classical evaluation measures and to a new one we introduce, based on the equivariance of the representation to morphological operators.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2020-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper addresses the issue of building a part-based representation of a dataset of images. More precisely, we look for a non-negative, sparse decomposition of the images on a reduced set of atoms, in order to unveil a morphological and explainable structure of the data. Additionally, we want this decomposition to be computed online for any new sample that is not part of the initial dataset. Therefore, our solution relies on a sparse, non-negative auto-encoder, where the encoder is deep (for accuracy) and the decoder shallow (for explainability). This method compares favorably to the state-of-the-art online methods on two benchmark datasets (MNIST and Fashion MNIST) and on a hyperspectral image, according to classical evaluation measures and to a new one we introduce, based on the equivariance of the representation to morphological operators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非对称自编码器学习的基于部分的表示逼近形态学算子
摘要:本文解决了构建图像数据集的基于部分的表示问题。更准确地说,我们寻找一个非负的,稀疏分解的图像在一个减少的原子集,以揭示数据的形态和可解释的结构。此外,我们希望对不属于初始数据集的任何新样本在线计算这种分解。因此,我们的解决方案依赖于一个稀疏的、非负的自编码器,其中编码器是深度的(为了准确性),解码器是浅的(为了可解释性)。该方法在两个基准数据集(MNIST和Fashion MNIST)和高光谱图像上,根据经典的评估措施和我们引入的基于形态学算子表示的等方差的新评估措施,优于最先进的在线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Imprecise and Bipolar Algebraic and Topological Relations using Morphological Dilations Robust Object Detection in Colour Images Using a Multivariate Percentage Occupancy Hit-or-Miss Transform Efficient Hierarchical Multi-Object Segmentation in Layered Graphs Mathematical morphology based on stochastic permutation orderings Median-Tree: An Efficient Counterpart of Tree-of-Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1