Detection of Eupatorium Adenophorum Based on Migration Learning

Yi Jiang, Junhua Zhang, Jiaqing Wang
{"title":"Detection of Eupatorium Adenophorum Based on Migration Learning","authors":"Yi Jiang, Junhua Zhang, Jiaqing Wang","doi":"10.1145/3404555.3404562","DOIUrl":null,"url":null,"abstract":"Eupatorium adenophorum is one of the most typical examples of invasive alien species in China. Invasion of Eupatorium adenophorum causes serious damage to ecological environment and affects economic development of agroforestry. As the key step in the entire prevention and treatment process, the detection of Eupatorium adenophorum is beneficial to the effective implementation of control measures. Therefore, this paper uses the improved YOLOv3 network to detect Eupatorium adenophorum. Data augmentation and migration learning methods are used to avoid overfitting problems in the model and improve robustness and generalization capabilities. Experimental results show that the average precision value of Eupatorium adenophorum test reached 54.22%. The speed and precision of test are slightly improved compared with the original network. The way of this paper can realize effective detection of Eupatorium adenophorum.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eupatorium adenophorum is one of the most typical examples of invasive alien species in China. Invasion of Eupatorium adenophorum causes serious damage to ecological environment and affects economic development of agroforestry. As the key step in the entire prevention and treatment process, the detection of Eupatorium adenophorum is beneficial to the effective implementation of control measures. Therefore, this paper uses the improved YOLOv3 network to detect Eupatorium adenophorum. Data augmentation and migration learning methods are used to avoid overfitting problems in the model and improve robustness and generalization capabilities. Experimental results show that the average precision value of Eupatorium adenophorum test reached 54.22%. The speed and precision of test are slightly improved compared with the original network. The way of this paper can realize effective detection of Eupatorium adenophorum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的紫茎泽兰检测
紫茎泽兰(Eupatorium adenophorum)是中国最典型的外来入侵物种之一。紫茎泽兰的入侵对生态环境造成严重破坏,影响农林业的经济发展。紫茎泽兰的检测是整个防治过程中的关键环节,有利于防治措施的有效实施。因此,本文采用改进的YOLOv3网络对紫茎泽兰进行检测。采用数据增强和迁移学习方法避免了模型中的过拟合问题,提高了鲁棒性和泛化能力。实验结果表明,紫茎泽兰测定的平均精密度可达54.22%。与原网络相比,该网络的测试速度和精度略有提高。该方法可实现对紫茎泽兰的有效检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1