LOSC

Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Yu Hua, D. Feng, Yongxuan Zhang
{"title":"LOSC","authors":"Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Yu Hua, D. Feng, Yongxuan Zhang","doi":"10.1145/3326285.3329069","DOIUrl":null,"url":null,"abstract":"Big data applications increasingly rely on the analysis of large graphs. In recent years, a number of out-of-core graph processing systems have been proposed to process graphs with billions of edges on just one commodity computer, by efficiently using the secondary storage (e.g., hard disk, SSD). On the other hand, the vertex-centric computing model is extensively used in graph processing thanks to its good applicability and expressiveness. Unfortunately, when implementing vertex-centric model for out-of-core graph processing, the large number of random memory accesses required to construct subgraphs lead to a serious performance bottleneck that substantially weakens cache access locality and thus leads to very long waiting time experienced by users for the computing results. In this paper, we propose an efficient out-of-core graph processing system, LOSC, to substantially reduce the overhead of subgraph construction without sacrificing the underlying vertex-centric computing model. LOSC proposes a locality-optimized subgraph construction scheme that significantly improves the in-memory data access locality of the subgraph construction phase. Furthermore, LOSC adopts a compact edge storage format and a lightweight replication of vertices to reduce I/O traffic and improve computation efficiency. Extensive evaluation results show that LOSC is respectively 6.9x and 3.5x faster than GraphChi and GridGraph, two state-of-the-art out-of-core systems.","PeriodicalId":269719,"journal":{"name":"Proceedings of the International Symposium on Quality of Service","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326285.3329069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Big data applications increasingly rely on the analysis of large graphs. In recent years, a number of out-of-core graph processing systems have been proposed to process graphs with billions of edges on just one commodity computer, by efficiently using the secondary storage (e.g., hard disk, SSD). On the other hand, the vertex-centric computing model is extensively used in graph processing thanks to its good applicability and expressiveness. Unfortunately, when implementing vertex-centric model for out-of-core graph processing, the large number of random memory accesses required to construct subgraphs lead to a serious performance bottleneck that substantially weakens cache access locality and thus leads to very long waiting time experienced by users for the computing results. In this paper, we propose an efficient out-of-core graph processing system, LOSC, to substantially reduce the overhead of subgraph construction without sacrificing the underlying vertex-centric computing model. LOSC proposes a locality-optimized subgraph construction scheme that significantly improves the in-memory data access locality of the subgraph construction phase. Furthermore, LOSC adopts a compact edge storage format and a lightweight replication of vertices to reduce I/O traffic and improve computation efficiency. Extensive evaluation results show that LOSC is respectively 6.9x and 3.5x faster than GraphChi and GridGraph, two state-of-the-art out-of-core systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DaRTree Chic RetroFlow LEAP FAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1