Betas, Benchmarks, and Beating the Market

Zurab Kakushadze, Willie Yu
{"title":"Betas, Benchmarks, and Beating the Market","authors":"Zurab Kakushadze, Willie Yu","doi":"10.2139/ssrn.3187779","DOIUrl":null,"url":null,"abstract":"This article provides an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, the authors use a multifactor risk model (which uses multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in the construction.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3187779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, the authors use a multifactor risk model (which uses multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in the construction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
beta版、基准和击败市场
本文提供了一个明确的公式化算法和源代码,用于构建只做多的基准投资组合,然后在只做多的市场胜出策略中使用这些基准。基准测试(或相应的beta测试)不涉及任何主要组件,也不需要迭代。相反,作者使用了一个多因素风险模型(使用多层次行业分类或聚类),专门针对只做多的基准投资组合来计算它们的权重,这在结构中是明确的正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phantom Liquidity and High-Frequency Quoting COMMENTARY: Commentary on “If Best Execution Is a Process, What Does That Process Look Like?”1 Editor’s Letter Machine Learning for Algorithmic Trading and Trade Schedule Optimization COMMENTARY: A Market Structure That Fits the Needs of Portfolio Managers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1