Nano silica dispersion in epoxy : the investigation of heat, milling speed and duration effect

S. Ong, J. Ismail, M. Bakar, I. A. Rahman, C. S. Sipaut, C. Chee
{"title":"Nano silica dispersion in epoxy : the investigation of heat, milling speed and duration effect","authors":"S. Ong, J. Ismail, M. Bakar, I. A. Rahman, C. S. Sipaut, C. Chee","doi":"10.1109/IEMT.2008.5507815","DOIUrl":null,"url":null,"abstract":"Nano composites are a promising development but the challenge of homogenous and discrete dispersion of the nano fillers are barriers that must be overcome before they can be effectively implemented. Although the common dispersion methods such as particle surface modification, comprehensive milling metrologies and the usage of solvents bear results, these are time consuming and not cost effective. In this paper, we explore the efficiency of coupling the usage of ball-media and heat on the dispersion of nano silica in epoxy. No solvents are involved. The effects of milling speed and duration are also studied albeit under a fixed ball media : silica-epoxy volume ratio of 3:5. The experiment set-up involves a simple 3-blade mixer, round bottom flask and 60 ? m zirconia ball. At nano silica loading of 10 wt % the nano silica clusters are systematically reduced from 1.5 - 2 ? m to 100 - 200 nm with the usage of ball media and application of heat. At the optimum milling speed and duration of 500 rpm for 5 hours, the aggregate sizes were further reduced to 30 - 70 nm, which is almost a discrete dispersion.","PeriodicalId":151085,"journal":{"name":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2008.5507815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano composites are a promising development but the challenge of homogenous and discrete dispersion of the nano fillers are barriers that must be overcome before they can be effectively implemented. Although the common dispersion methods such as particle surface modification, comprehensive milling metrologies and the usage of solvents bear results, these are time consuming and not cost effective. In this paper, we explore the efficiency of coupling the usage of ball-media and heat on the dispersion of nano silica in epoxy. No solvents are involved. The effects of milling speed and duration are also studied albeit under a fixed ball media : silica-epoxy volume ratio of 3:5. The experiment set-up involves a simple 3-blade mixer, round bottom flask and 60 ? m zirconia ball. At nano silica loading of 10 wt % the nano silica clusters are systematically reduced from 1.5 - 2 ? m to 100 - 200 nm with the usage of ball media and application of heat. At the optimum milling speed and duration of 500 rpm for 5 hours, the aggregate sizes were further reduced to 30 - 70 nm, which is almost a discrete dispersion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米二氧化硅在环氧树脂中的分散:热、铣削速度和持续时间效应的研究
纳米复合材料是一个很有前途的发展方向,但纳米填料的均匀性和分散性是其有效应用必须克服的障碍。虽然常见的分散方法,如颗粒表面改性、综合铣削计量和溶剂的使用都有效果,但这些都是耗时且不经济的。本文探讨了球介质与热耦合作用对纳米二氧化硅在环氧树脂中的分散效果。不涉及溶剂。在固定的球介质:硅-环氧体积比为3:5的情况下,也研究了铣削速度和持续时间的影响。实验装置包括一个简单的3叶片搅拌器,圆底烧瓶和60 ?M氧化锆球。在纳米二氧化硅负载为10 wt %时,纳米二氧化硅团簇系统地从1.5 - 2 ?M至100 - 200nm,使用球介质和加热。在最佳磨矿速度和500转/分的磨矿时间下,磨矿时间为5小时,骨料尺寸进一步减小到30 - 70 nm,几乎是离散的分散体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process development and reliability evaluation of Electrically conductive adhesives (ECA) for low temperature SMT assembly Lead-free solder ball attach improvement on FCPBGA with SOP pad finishing High efficiency 850 nm Vertical-Cavity Surface-Emitting Laser using fan-pad metallization and trench patterning A comparison study on SnAgNiCo and Sn3.8Ag0.7Cu C5 lead free solder system Pressure sensors based on MEMS, operating in harsh environments (touch-mode)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1